3 resultados para Statistical Mechanics

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a microscopic setting, humans behave in rich and unexpected ways. In a macroscopic setting, however, distinctive patterns of group behavior emerge, leading statistical physicists to search for an underlying mechanism. The aim of this dissertation is to analyze the macroscopic patterns of competing ideas in order to discern the mechanics of how group opinions form at the microscopic level. First, we explore the competition of answers in online Q&A (question and answer) boards. We find that a simple individual-level model can capture important features of user behavior, especially as the number of answers to a question grows. Our model further suggests that the wisdom of crowds may be constrained by information overload, in which users are unable to thoroughly evaluate each answer and therefore tend to use heuristics to pick what they believe is the best answer. Next, we explore models of opinion spread among voters to explain observed universal statistical patterns such as rescaled vote distributions and logarithmic vote correlations. We introduce a simple model that can explain both properties, as well as why it takes so long for large groups to reach consensus. An important feature of the model that facilitates agreement with data is that individuals become more stubborn (unwilling to change their opinion) over time. Finally, we explore potential underlying mechanisms for opinion formation in juries, by comparing data to various types of models. We find that different null hypotheses in which jurors do not interact when reaching a decision are in strong disagreement with data compared to a simple interaction model. These findings provide conceptual and mechanistic support for previous work that has found mutual influence can play a large role in group decisions. In addition, by matching our models to data, we are able to infer the time scales over which individuals change their opinions for different jury contexts. We find that these values increase as a function of the trial time, suggesting that jurors and judicial panels exhibit a kind of stubbornness similar to what we include in our model of voting behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis proves certain results concerning an important question in non-equilibrium quantum statistical mechanics which is the derivation of effective evolution equations approximating the dynamics of a system of large number of bosons initially at equilibrium (ground state at very low temperatures). The dynamics of such systems are governed by the time-dependent linear many-body Schroedinger equation from which it is typically difficult to extract useful information due to the number of particles being large. We will study quantitatively (i.e. with explicit bounds on the error) how a suitable one particle non-linear Schroedinger equation arises in the mean field limit as number of particles N → ∞ and how the appropriate corrections to the mean field will provide better approximations of the exact dynamics. In the first part of this thesis we consider the evolution of N bosons, where N is large, with two-body interactions of the form N³ᵝv(Nᵝ⋅), 0≤β≤1. The parameter β measures the strength and the range of interactions. We compare the exact evolution with an approximation which considers the evolution of a mean field coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case of β < 1/2 and obtain an error bound of the form p(t)/Nᵅ, where α>0 and p(t) is a polynomial, which implies a specific rate of convergence as N → ∞. In the second part, utilizing estimates of the type discussed in the first part, we compare the exact evolution with the mean field approximation in the sense of marginals. We prove that the exact evolution is close to the approximate in trace norm for times of the order o(1)√N compared to log(o(1)N) as obtained in Chen-Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for stronger interactions as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.