5 resultados para Specific inhalation challenge test
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Modern software application testing, such as the testing of software driven by graphical user interfaces (GUIs) or leveraging event-driven architectures in general, requires paying careful attention to context. Model-based testing (MBT) approaches first acquire a model of an application, then use the model to construct test cases covering relevant contexts. A major shortcoming of state-of-the-art automated model-based testing is that many test cases proposed by the model are not actually executable. These \textit{infeasible} test cases threaten the integrity of the entire model-based suite, and any coverage of contexts the suite aims to provide. In this research, I develop and evaluate a novel approach for classifying the feasibility of test cases. I identify a set of pertinent features for the classifier, and develop novel methods for extracting these features from the outputs of MBT tools. I use a supervised logistic regression approach to obtain a model of test case feasibility from a randomly selected training suite of test cases. I evaluate this approach with a set of experiments. The outcomes of this investigation are as follows: I confirm that infeasibility is prevalent in MBT, even for test suites designed to cover a relatively small number of unique contexts. I confirm that the frequency of infeasibility varies widely across applications. I develop and train a binary classifier for feasibility with average overall error, false positive, and false negative rates under 5\%. I find that unique event IDs are key features of the feasibility classifier, while model-specific event types are not. I construct three types of features from the event IDs associated with test cases, and evaluate the relative effectiveness of each within the classifier. To support this study, I also develop a number of tools and infrastructure components for scalable execution of automated jobs, which use state-of-the-art container and continuous integration technologies to enable parallel test execution and the persistence of all experimental artifacts.
Resumo:
The Graphical User Interface (GUI) is an integral component of contemporary computer software. A stable and reliable GUI is necessary for correct functioning of software applications. Comprehensive verification of the GUI is a routine part of most software development life-cycles. The input space of a GUI is typically large, making exhaustive verification difficult. GUI defects are often revealed by exercising parts of the GUI that interact with each other. It is challenging for a verification method to drive the GUI into states that might contain defects. In recent years, model-based methods, that target specific GUI interactions, have been developed. These methods create a formal model of the GUI’s input space from specification of the GUI, visible GUI behaviors and static analysis of the GUI’s program-code. GUIs are typically dynamic in nature, whose user-visible state is guided by underlying program-code and dynamic program-state. This research extends existing model-based GUI testing techniques by modelling interactions between the visible GUI of a GUI-based software and its underlying program-code. The new model is able to, efficiently and effectively, test the GUI in ways that were not possible using existing methods. The thesis is this: Long, useful GUI testcases can be created by examining the interactions between the GUI, of a GUI-based application, and its program-code. To explore this thesis, a model-based GUI testing approach is formulated and evaluated. In this approach, program-code level interactions between GUI event handlers will be examined, modelled and deployed for constructing long GUI testcases. These testcases are able to drive the GUI into states that were not possible using existing models. Implementation and evaluation has been conducted using GUITAR, a fully-automated, open-source GUI testing framework.
Resumo:
Cancer and cardio-vascular diseases are the leading causes of death world-wide. Caused by systemic genetic and molecular disruptions in cells, these disorders are the manifestation of profound disturbance of normal cellular homeostasis. People suffering or at high risk for these disorders need early diagnosis and personalized therapeutic intervention. Successful implementation of such clinical measures can significantly improve global health. However, development of effective therapies is hindered by the challenges in identifying genetic and molecular determinants of the onset of diseases; and in cases where therapies already exist, the main challenge is to identify molecular determinants that drive resistance to the therapies. Due to the progress in sequencing technologies, the access to a large genome-wide biological data is now extended far beyond few experimental labs to the global research community. The unprecedented availability of the data has revolutionized the capabilities of computational researchers, enabling them to collaboratively address the long standing problems from many different perspectives. Likewise, this thesis tackles the two main public health related challenges using data driven approaches. Numerous association studies have been proposed to identify genomic variants that determine disease. However, their clinical utility remains limited due to their inability to distinguish causal variants from associated variants. In the presented thesis, we first propose a simple scheme that improves association studies in supervised fashion and has shown its applicability in identifying genomic regulatory variants associated with hypertension. Next, we propose a coupled Bayesian regression approach -- eQTeL, which leverages epigenetic data to estimate regulatory and gene interaction potential, and identifies combinations of regulatory genomic variants that explain the gene expression variance. On human heart data, eQTeL not only explains a significantly greater proportion of expression variance in samples, but also predicts gene expression more accurately than other methods. We demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation, particularly those with small effect sizes. Using various functional data, we show that SNPs detected by eQTeL are enriched for allele-specific protein binding and histone modifications, which potentially disrupt binding of core cardiac transcription factors and are spatially proximal to their target. eQTeL SNPs capture a substantial proportion of genetic determinants of expression variance and we estimate that 58% of these SNPs are putatively causal. The challenge of identifying molecular determinants of cancer resistance so far could only be dealt with labor intensive and costly experimental studies, and in case of experimental drugs such studies are infeasible. Here we take a fundamentally different data driven approach to understand the evolving landscape of emerging resistance. We introduce a novel class of genetic interactions termed synthetic rescues (SR) in cancer, which denotes a functional interaction between two genes where a change in the activity of one vulnerable gene (which may be a target of a cancer drug) is lethal, but subsequently altered activity of its partner rescuer gene restores cell viability. Next we describe a comprehensive computational framework --termed INCISOR-- for identifying SR underlying cancer resistance. Applying INCISOR to mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data, we identified the first pan-cancer SR networks, composed of interactions common to many cancer types. We experimentally test and validate a subset of these interactions involving the master regulator gene mTOR. We find that rescuer genes become increasingly activated as breast cancer progresses, testifying to pervasive ongoing rescue processes. We show that SRs can be utilized to successfully predict patients' survival and response to the majority of current cancer drugs, and importantly, for predicting the emergence of drug resistance from the initial tumor biopsy. Our analysis suggests a potential new strategy for enhancing the effectiveness of existing cancer therapies by targeting their rescuer genes to counteract resistance. The thesis provides statistical frameworks that can harness ever increasing high throughput genomic data to address challenges in determining the molecular underpinnings of hypertension, cardiovascular disease and cancer resistance. We discover novel molecular mechanistic insights that will advance the progress in early disease prevention and personalized therapeutics. Our analyses sheds light on the fundamental biological understanding of gene regulation and interaction, and opens up exciting avenues of translational applications in risk prediction and therapeutics.
Resumo:
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA’s Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within +/- 3 Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2-2.5 Celsius lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft in 2017-2018 is also presented.
Resumo:
The evaluation and identification of habitats that function as nurseries for marine species has the potential to improve conservation and management. A key assessment of nursery habitat is estimating individual growth. However, the discrete growth of crustaceans presents a challenge for many traditional in situ techniques to accurately estimate growth over a short temporal scale. To evaluate the use of nucleic acid ratios (R:D) for juvenile blue crab (Callinectes sapidus), I developed and validated an R:D-based index of growth in the laboratory. R:D based growth estimates of crabs collected in the Patuxent River, MD indicated growth ranged from 0.8-25.9 (mg·g-1·d-1). Overall, there was no effect of size on growth, whereas there was a weak, but significant effect of date. These data provide insight into patterns of habitat-specific growth. These results highlight the complexity of the biological and physical factors which regulate growth of juvenile blue crabs in the field.