5 resultados para Spanish as a standard language
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Secure Multi-party Computation (MPC) enables a set of parties to collaboratively compute, using cryptographic protocols, a function over their private data in a way that the participants do not see each other's data, they only see the final output. Typical MPC examples include statistical computations over joint private data, private set intersection, and auctions. While these applications are examples of monolithic MPC, richer MPC applications move between "normal" (i.e., per-party local) and "secure" (i.e., joint, multi-party secure) modes repeatedly, resulting overall in mixed-mode computations. For example, we might use MPC to implement the role of the dealer in a game of mental poker -- the game will be divided into rounds of local decision-making (e.g. bidding) and joint interaction (e.g. dealing). Mixed-mode computations are also used to improve performance over monolithic secure computations. Starting with the Fairplay project, several MPC frameworks have been proposed in the last decade to help programmers write MPC applications in a high-level language, while the toolchain manages the low-level details. However, these frameworks are either not expressive enough to allow writing mixed-mode applications or lack formal specification, and reasoning capabilities, thereby diminishing the parties' trust in such tools, and the programs written using them. Furthermore, none of the frameworks provides a verified toolchain to run the MPC programs, leaving the potential of security holes that can compromise the privacy of parties' data. This dissertation presents language-based techniques to make MPC more practical and trustworthy. First, it presents the design and implementation of a new MPC Domain Specific Language, called Wysteria, for writing rich mixed-mode MPC applications. Wysteria provides several benefits over previous languages, including a conceptual single thread of control, generic support for more than two parties, high-level abstractions for secret shares, and a fully formalized type system and operational semantics. Using Wysteria, we have implemented several MPC applications, including, for the first time, a card dealing application. The dissertation next presents Wys*, an embedding of Wysteria in F*, a full-featured verification oriented programming language. Wys* improves on Wysteria along three lines: (a) It enables programmers to formally verify the correctness and security properties of their programs. As far as we know, Wys* is the first language to provide verification capabilities for MPC programs. (b) It provides a partially verified toolchain to run MPC programs, and finally (c) It enables the MPC programs to use, with no extra effort, standard language constructs from the host language F*, thereby making it more usable and scalable. Finally, the dissertation develops static analyses that help optimize monolithic MPC programs into mixed-mode MPC programs, while providing similar privacy guarantees as the monolithic versions.
Resumo:
Two out of three English Language Learners (ELLs) graduate from secondary schools nationwide. Of the nearly five million ELLs in public schools, more than 70% of these students’ first language is Spanish. In order to understand and resolve this phenomena and in an effort to increase the number of graduates, this research examined what high school Latino ELLs identified as the major external and internal factors that support or challenge them on the graduation pathway. The study utilized a 32 quantitative and qualitative question student survey, as well as student focus groups. Both the survey and the focus groups were conducted in English and Spanish. The questions considered the following factors: 1) value of education; 2) expectations in achieving their long-term goals; 3) current education levels; 4) expectations before coming to the United States; 5) family obligations; and 6) future aspirations. The survey was administered to 159 Latino ELLs enrolled in grades 9-12. Research took place at three high schools that provide English for Speakers of Other Languages (ESOL) classes in a large school system in the Mid-Atlantic region. The three schools involved in the study have more than 1,500 ELLs. Two of the schools had large ESOL instructional programs, and one school had a comparatively smaller ESOL program. The majority of students surveyed were from El Salvador (72%) and Guatemala (12.6%). Using Qualtrics, an independent facilitator and a bilingual translator administered the online survey tool to the students during their ESOL classes. Two weeks later, the researcher hosted three follow-up focus groups, totaling 37 students from those students who took the survey. Each focus group was conducted at the three schools by the lead researcher and the translator. The purpose of the focus group was to obtain deeper insight on how secondary age Latino ELLs defined success in school, what they identified to be their support factors, and how previous and present experiences helped or hindered their goals. From the research findings, ten recommendations range from suggested policy updates to cross-cultural/equity training for students and staff; they were developed, stemming from the findings and what the students identified.
Resumo:
Spelling is an important literacy skill, and learning to spell is an important component of learning to write. Learners with strong spelling skills also exhibit greater reading, vocabulary, and orthographic knowledge than those with poor spelling skills (Ehri & Rosenthal, 2007; Ehri & Wilce, 1987; Rankin, Bruning, Timme, & Katkanant, 1993). English, being a deep orthography, has inconsistent sound-to-letter correspondences (Seymour, 2005; Ziegler & Goswami, 2005). This poses a great challenge for learners in gaining spelling fluency and accuracy. The purpose of the present study is to examine cross-linguistic transfer of English vowel spellings in Spanish-speaking adult ESL learners. The research participants were 129 Spanish-speaking adult ESL learners and 104 native English-speaking GED students enrolled in a community college located in the South Atlantic region of the United States. The adult ESL participants were in classes at three different levels of English proficiency: advanced, intermediate, and beginning. An experimental English spelling test was administered to both the native English-speaking and ESL participants. In addition, the adult ESL participants took the standardized spelling tests to rank their spelling skills in both English and Spanish. The data were analyzed using robust regression and Poisson regression procedures, Mann-Whitney test, and descriptive statistics. The study found that both Spanish spelling skills and English proficiency are strong predictors of English spelling skills. Spanish spelling is also a strong predictor of level of L1-influenced transfer. More proficient Spanish spellers made significantly fewer L1-influenced spelling errors than less proficient Spanish spellers. L1-influenced transfer of spelling knowledge from Spanish to English likely occurred in three vowel targets (/ɑɪ/ spelled as ae, ai, or ay, /ɑʊ/ spelled as au, and /eɪ/ spelled as e). The ESL participants and the native English-speaking participants produced highly similar error patterns of English vowel spellings when the errors did not indicate L1-influenced transfer, which implies that the two groups might follow similar trajectories of developing English spelling skills. The findings may help guide future researchers or practitioners to modify and develop instructional spelling intervention to meet the needs of adult ESL learners and help them gain English spelling competence.
Resumo:
Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.
Resumo:
The relevance of explicit instruction has been well documented in SLA research. Despite numerous positive findings, however, the issue continues to engage scholars worldwide. One issue that was largely neglected in previous empirical studies - and one that may be crucial for the effectiveness of explicit instruction - is the timing and integration of rules and practice. The present study investigated the extent to which grammar explanation (GE) before practice, grammar explanation during practice, and individual differences impact the acquisition of L2 declarative and procedural knowledge of two grammatical structures in Spanish. In this experiment, 128 English-speaking learners of Spanish were randomly assigned to four experimental treatments and completed comprehension-based task-essential practice for interpreting object-verb (OV) and ser/estar (SER) sentences in Spanish. Results confirmed the predicted importance of timing of GE: participants who received GE during practice were more likely to develop and retain their knowledge successfully. Results further revealed that the various combinations of rules and practice posed differential task demands on the learners and consequently drew on language aptitude and WM to a different extent. Since these correlations between individual differences and learning outcomes were the least observed in the conditions that received GE during practice, we argue that the suitable integration of rules and practice ameliorated task demands, reducing the burden on the learner, and accordingly mitigated the role of participants’ individual differences. Finally, some evidence also showed that the comprehension practice that participants received for the two structures was not sufficient for the formation of solid productive knowledge, but was more effective for the OV than for the SER construction.