2 resultados para Solid separation problems
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Solid oxide fuel cell (SOFC) is an electrochemical device that converts chemical energy into electric power with high efficiency. Traditional SOFC has its disadvantages, such as redox cycling instability and carbon deposition while using hydrocarbon fuels. It is because traditional SOFC uses Ni-cermet as anode. In order to solve these problems, ceramic anode is a good candidate to replace Ni. However, the conductivity of most ceramic anode materials are much lower than Ni metal, and it introduces high ohmic resistance. How to increase the conductivity is a hot topic in this research field. Based on our proposed mechanism, several types of ceramic materials have been developed. Vanadium doped perovskite, Sr1-x/2VxTi1-xO3 (SVT) and Sr0.2Na0.8Nb1-xVxO3 (SNNV), achieved the conductivity as high as 300 S*cm-1 in hydrogen, without any high temperature reduction. GDC electrolyte supported cell was fabricated with Sr0.2Na0.8Nb0.9V0.1O3 and the performance was measured in hydrogen and methane respectively. Due to vanadium’s intrinsic problems, the anode supported cell is not easy. Fe doped double perovskite Sr2CoMoO6 (SFCM) was also developed. By carefully doping Fe, the conductivity was improved over one magnitude, without any vigorous reducing conditions. SFCM anode supported cell was successfully fabricated with GDC as the electrolyte. By impregnating Ni-GDC nano particles into the anode, the cell can be operated at lower temperatures while having higher performance than the traditional Ni-cermet cells. Meanwhile, this SFCM anode supported SOFC has long term stability in the reformate containing methane. During the anode development, cathode improvement caused by a thin Co-GDC layer was observed. By adding this Co-GDC layer between the electrolyte and the cathode, the interfacial resistance decreases due to fast oxygen ion transport. This mechanism was confirmed via isotope exchange. This Co-GDC layer works with multiple kinds of cathodes and the modified cell’s performance is 3 times as the traditional Ni-GDC cell. With this new method, lowering the SOFC operation temperature is feasible.
Resumo:
The relationship between industry, waste, and urbanism is one fraught with problems across the United States and in particular American cities. The interrelated nature of these systems of flows is in critical need of re-evaluation. This thesis critiques the system of Municipal Solid Waste Management as it currently exists in American cities as a necessary yet undesirable ‘invisible infrastructure’. Industry and waste environments have been pushed to the periphery of urban environments, severing the relationship between the urban environment we inhabit and the one that is required to support the way we live. The flow of garbage from cities of high density to landscapes of waste has created a model of valuing waste as a linear system that separates input from output. This thesis aims to investigate ways that industry, waste, and urban ecologies can work to reinforce one another. The goal of this thesis is to repair the physical and mental separation of waste and public activity through architecture. This thesis will propose ways to tie urban waste infrastructure and public amenities together through the merging of architecture and landscape to create new avenues for public engagement with waste processes.