2 resultados para Social Evaluation
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Social network sites (SNS), such as Facebook, Google+ and Twitter, have attracted hundreds of millions of users daily since their appearance. Within SNS, users connect to each other, express their identity, disseminate information and form cooperation by interacting with their connected peers. The increasing popularity and ubiquity of SNS usage and the invaluable user behaviors and connections give birth to many applications and business models. We look into several important problems within the social network ecosystem. The first one is the SNS advertisement allocation problem. The other two are related to trust mechanisms design in social network setting, including local trust inference and global trust evaluation. In SNS advertising, we study the problem of advertisement allocation from the ad platform's angle, and discuss its differences with the advertising model in the search engine setting. By leveraging the connection between social networks and hyperbolic geometry, we propose to solve the problem via approximation using hyperbolic embedding and convex optimization. A hyperbolic embedding method, \hcm, is designed for the SNS ad allocation problem, and several components are introduced to realize the optimization formulation. We show the advantages of our new approach in solving the problem compared to the baseline integer programming (IP) formulation. In studying the problem of trust mechanisms in social networks, we consider the existence of distrust (i.e. negative trust) relationships, and differentiate between the concept of local trust and global trust in social network setting. In the problem of local trust inference, we propose a 2-D trust model. Based on the model, we develop a semiring-based trust inference framework. In global trust evaluation, we consider a general setting with conflicting opinions, and propose a consensus-based approach to solve the complex problem in signed trust networks.
Resumo:
An economy of effort is a core characteristic of highly skilled motor performance often described as being effortless or automatic. Electroencephalographic (EEG) evaluation of cortical activity in elite performers has consistently revealed a reduction in extraneous associative cortical activity and an enhancement of task-relevant cortical processes. However, this has only been demonstrated under what are essentially practice-like conditions. Recently it has been shown that cerebral cortical activity becomes less efficient when performance occurs in a stressful, complex social environment. This dissertation examines the impact of motor skill training or practice on the EEG cortical dynamics that underlie performance in a stressful, complex social environment. Sixteen ROTC cadets participated in head-to-head pistol shooting competitions before and after completing nine sessions of skill training over three weeks. Spectral power increased in the theta frequency band and decreased in the low alpha frequency band after skill training. EEG Coherence increased in the left frontal region and decreased in the left temporal region after the practice intervention. These suggest a refinement of cerebral cortical dynamics with a reduction of task extraneous processing in the left frontal region and an enhancement of task related processing in the left temporal region consistent with the skill level reached by participants. Partitioning performance into ‘best’ and ‘worst’ based on shot score revealed that deliberate practice appears to optimize cerebral cortical activity of ‘best’ performances which are accompanied by a reduction in task-specific processes reflected by increased high-alpha power, while ‘worst’ performances are characterized by an inappropriate reduction in task-specific processing resulting in a loss of focus reflected by higher high-alpha power after training when compared to ‘best’ performances. Together, these studies demonstrate the power of experience afforded by practice, as a controllable factor, to promote resilience of cerebral cortical efficiency in complex environments.