3 resultados para Selim III, Sultan of the Turks, 1761-1808.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the summers of 1998 and 1999, the Archaeology in Annapolis project carried out archaeological investigation at the eighteenth century Dr. Upton Scott House site (18AP18)located at 4 Shipwright Street in the historic district of Annapolis, Anne Arundel County, Maryland. The Upton Scott House is significant as one of only a few Georgian houses with remnants of its original plantation-inspired landscape still visible (Graham 1998:147). Investigation was completed in agreement with the owners of the historic property, Mr. and Mrs. Paul Christian, who were interested in determining the condition and arrangement of Dr. Upton Scott’s well-documented pleasure gardens. Betty Cosans’ 1972 Archaeological Feasibility Report, the first real archaeological study of the Upton Scott House site, guided the research design and recovery efforts. Cosans determined that testing and survey in the back and side yards of the Scott property would yield important information on the use and history of the property, including that of Scott’s famous gardens. Excavation units and trenches were placed within three separate areas of backyard activity on the site which included Area One: extant brick stables in the southwest of the property; Area Two: the brick foundations of a small outbuilding located in the northwest area of the site; and Area Three: the area of Scott’s formal gardens. The research design included an interest in recovering evidence of African-American spiritual practice and domestic life at the site. Also of significant importance was an analysis of Scott’s garden beds, concerning the order and layout. Also sought was an understanding of the change in perception and use of the backyard by the various owners of the property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the summer of 1994, Archaeology in Annapolis conducted archaeological investigations of the city block bounded by Franklin, South and Cathedral Streets in the city of Annapolis. This Phase III excavation was conducted as a means to identify subsurface cultural resources in the impact area associated with the proposed construction of the Anne Arundel County Courthouse addition. This impact area included both the upper and lower parking lots used by Courthouse employees. Investigations were conducted in the form of mechanical trenching and hand excavated units. Excavations in the upper lot area yielded significant information concerning the interior area of the block. Known as Bellis Court, this series of rowhouses was constructed in the late nineteenth century and was used as rental properties by African-Americans. The dwellings remained until the middle of the twentieth century when they were demolished in preparation for the construction of a Courthouse addition. Portions of the foundation of a house owned by William H. Bellis in the 1870s were also exposed in this area. Construction of this house was begun by William Nicholson around 1730 and completed by Daniel Dulany in 1732/33. It was demolished in 1896 by James Munroe, a Trustee for Bellis. Excavations in the upper lot also revealed the remains of a late seventeenth/early eighteenth century wood-lined cellar, believed to be part of the earliest known structure on Lot 58. After an initially rapid deposition of fill around 1828, this cellar was gradually covered with soil throughout the remainder of the nineteenth century. The fill deposit in the cellar feature yielded a mixed assemblage of artifacts that included sherds of early materials such as North Devon gravel-tempered earthenware, North Devon sgraffito and Northem Italian slipware, along with creamware, pearlware and whiteware. In the lower parking lot, numerous artifacts were recovered from yard scatter associated with the houses that at one time fronted along Cathedral Street and were occupied by African- Americans. An assemblage of late seventeenth century/early eighteenth century materials and several slag deposits from an early forge were recovered from this second area of study. The materials associated with the forge, including portions of a crucible, provided evidence of some of the earliest industry in Annapolis. Investigations in both the upper and lower parking lots added to the knowledge of the changing landscape within the project area, including a prevalence of open space in early periods, a surprising survival of impermanent structures, and a gradual regrading and filling of the block with houses and interior courts. Excavations at the Anne Arundel County Courthouse proved this to be a multi-component site, rich in cultural resources from Annapolis' Early Settlement Period through its Modern Period (as specified by Maryland's Comprehensive Historic Preservation Plan (Weissman 1986)). This report provides detailed interpretations of the archaeological findings of these Phase III investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The survival and descent of cells is universally dependent on maintaining their proteins in a properly folded condition. It is widely accepted that the information for the folding of the nascent polypeptide chain into a native protein is encrypted in the amino acid sequence, and the Nobel Laureate Christian Anfinsen was the first to demonstrate that a protein could spontaneously refold after complete unfolding. However, it became clear that the observed folding rates for many proteins were much slower than rates estimated in vivo. This led to the recognition of required protein-protein interactions that promote proper folding. A unique group of proteins, the molecular chaperones, are responsible for maintaining protein homeostasis during normal growth as well as stress conditions. Chaperonins (CPNs) are ubiquitous and essential chaperones. They form ATP-dependent, hollow complexes that encapsulate polypeptides in two back-to-back stacked multisubunit rings, facilitating protein folding through highly cooperative allosteric articulation. CPNs are usually classified into Group I and Group II. Here, I report the characterization of a novel CPN belonging to a third Group, recently discovered in bacteria. Group III CPNs have close phylogenetic association to the Group II CPNs found in Archaea and Eukarya, and may be a relic of the Last Common Ancestor of the CPN family. The gene encoding the Group III CPN from Carboxydothermus hydrogenoformans and Candidatus Desulforudis audaxviator was cloned in E. coli and overexpressed in order to both characterize the protein and to demonstrate its ability to function as an ATPase chaperone. The opening and closing cycle of the Chy chaperonin was examined via site-directed mutations affecting the ATP binding site at R155. To relate the mutational analysis to the structure of the CPN, the crystal structure of both the AMP-PNP (an ATP analogue) and ADP bound forms were obtained in collaboration with Sun-Shin Cha in Seoul, South Korea. The ADP and ATP binding site substitutions resulted in frozen forms of the structures in open and closed conformations. From this, mutants were designed to validate hypotheses regarding key ATP interacting sites as well as important stabilizing interactions, and to observe the physical properties of the resulting complexes by calorimetry.