2 resultados para Seat

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation I study the development of urban areas. At the aggregate level I investigate how they may be affected by climate change policies and by being designated the seat of governmental power. At the household level I study with coauthors how microfinance could improve the health of urban residents. In Chapter 1, I investigate how local employment may be affected by electricity price increases, which is a likely consequence of climate change policies. I outline how previous studies that find large, negative effects may be biased. To overcome these biases I develop a novel estimation strategy that blends border-pair regressions with the synthetic control methodology. I show the conditions for consistent estimation. Using this estimator, I find no effect of contemporaneous price changes on employment. Consistent with the longer time-frame for manufacturing decisions, I do find evidence for negative effects from perceived permanent price shocks. These estimates are much smaller than previous research has found. National capital cities are often substantially larger than other cities in their countries. In Chapter 2, I investigate whether there is a causal effect from being a capital by studying the 1960 relocation of the Brazilian capital from Rio de Janeiro to Brasília. Using a synthetic controls strategy I find that losing the capital had no significant effects on Rio de Janeiro in terms of population, employment, or gross domestic product (GDP). I find that Brasília experienced large and significant increases in population, employment, and GDP. I find evidence of large spillovers from the public to the private sector. Chapter 3 investigates how microfinance could increase the uptake of costly health goods. We study the effect of time payments (micro-loans or micro-savings) on willingness-to-pay (WTP) for a water filter among households in the slums of Dhaka, Bangladesh. We find that time payments significantly increase WTP: compared to a lump-sum up-front purchase, median WTP increases 83% with a six-month loan and 115% with a 12-month loan. We find that households are quite patient with respect to consumption of health inputs. We find evidence for the presence of credit and savings constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.