2 resultados para Search of Optimal Paths

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

My dissertation presented seven violin concertos in three recital programs. Three of these concertos are acknowledged masterpieces performed in established concert venues throughout the world. They are the concertos of Mozart, Beethoven and Tchaikovsky. The other four are less standard and are composed by Viotti, Kreutzer, Rode and Spohr. These less standard concertos were popular during their time yet they seem not to have stood the test of time. A curriculum devoted exclusively to the standard concertos creates problems for the young violinist. The Mozart violin concertos are often the first standard concertos that the young violin student encounters. They are considered to be the least technically demanding of the standard concertos. The next most advanced standard concertos that the student will usually encounter are Bruch’s G minor concerto, Wieniawski’s D minor concerto and Barber’s concerto. The trouble is that the work on Mozart concertos does not adequately prepare a student for the next most advanced standard concerto. There is a discontinuous leap in the progression of technical difficulty between the Mozart concertos and the next most advanced concertos. Likewise the standard concerto repertoire provides no smooth historical or stylistic progression between the Mozart concertos and the next most advanced concertos. If the young violinist is limited to the standard repertoire then she has no smooth progression either technical, historical or stylistic. I seek to demonstrate that, by adding concertos of Spohr, Viotti, Kreutzer, and Rode to the standard violin curriculum, one could remedy this problem. The first and third recitals were performed in the Gildenhorn Recital Hall and the second recital in the School of Music’s Smith Lecture Hall, both at the University of Maryland. All three recitals can be found in the Digital Repository at the University of Maryland (DRUM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unmanned aerial vehicles (UAVs) frequently operate in partially or entirely unknown environments. As the vehicle traverses the environment and detects new obstacles, rapid path replanning is essential to avoid collisions. This thesis presents a new algorithm called Hierarchical D* Lite (HD*), which combines the incremental algorithm D* Lite with a novel hierarchical path planning approach to replan paths sufficiently fast for real-time operation. Unlike current hierarchical planning algorithms, HD* does not require map corrections before planning a new path. Directional cost scale factors, path smoothing, and Catmull-Rom splines are used to ensure the resulting paths are feasible. HD* sacrifices optimality for real-time performance. Its computation time and path quality are dependent on the map size, obstacle density, sensor range, and any restrictions on planning time. For the most complex scenarios tested, HD* found paths within 10% of optimal in under 35 milliseconds.