3 resultados para Schnute growth model
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The evaluation and identification of habitats that function as nurseries for marine species has the potential to improve conservation and management. A key assessment of nursery habitat is estimating individual growth. However, the discrete growth of crustaceans presents a challenge for many traditional in situ techniques to accurately estimate growth over a short temporal scale. To evaluate the use of nucleic acid ratios (R:D) for juvenile blue crab (Callinectes sapidus), I developed and validated an R:D-based index of growth in the laboratory. R:D based growth estimates of crabs collected in the Patuxent River, MD indicated growth ranged from 0.8-25.9 (mg·g-1·d-1). Overall, there was no effect of size on growth, whereas there was a weak, but significant effect of date. These data provide insight into patterns of habitat-specific growth. These results highlight the complexity of the biological and physical factors which regulate growth of juvenile blue crabs in the field.
Resumo:
A model to estimate the mean monthly growth of Crassostrea virginica oysters in Chesapeake Bay was developed. This model is based on the classic von Bertalanffy growth function, however the growth constant is changed every monthly timestep in response to short term changes in temperature and salinity. Using a dynamically varying growth constant allows the model to capture seasonal oscillations in growth, and growth responses to changing environmental conditions that previous applications of the von Bertalanffy model do not capture. This model is further expanded to include an estimation of Perkinsus marinus impacts on growth rates as well as estimations of ecosystem services provided by a restored oyster bar over time. The model was validated by comparing growth estimates from the model to oyster shell height observations from a variety of restoration sites in the upper Chesapeake Bay. Without using the P. marinus impact on growth, the model consistently overestimates mean oyster growth. However, when P. marinus effects are included in the model, the model estimates match the observed mean shell height closely for at least the first 3 years of growth. The estimates of ecosystem services suggested by this model imply that even with high levels of mortality on an oyster reef, the ecosystem services provided by that reef can still be maintained by growth for several years. Because larger oyster filter more water than smaller ones, larger oysters contribute more to the filtration and nutrient removal ecosystem services of the reef. Therefore a reef with an abundance of larger oysters will provide better filtration and nutrient removal. This implies that if an oyster restoration project is trying to improve water quality through oyster filtration, it is important to maintain the larger older oysters on the reef.
Resumo:
This dissertation describes two studies on macroeconomic trends and cycles. The first chapter studies the impact of Information Technology (IT) on the U.S. labor market. Over the past 30 years, employment and income shares of routine-intensive occupations have declined significantly relative to nonroutine occupations, and the overall U.S. labor income share has declined relative to capital. Furthermore, the decline of routine employment has been largely concentrated during recessions and ensuing recoveries. I build a model of unbalanced growth to assess the role of computerization and IT in driving these labor market trends and cycles. I augment a neoclassical growth model with exogenous IT progress as a form of Routine-Biased Technological Change (RBTC). I show analytically that RBTC causes the overall labor income share to follow a U-shaped time path, as the monotonic decline of routine labor share is increasingly offset by the monotonic rise of nonroutine labor share and the elasticity of substitution between the overall labor and capital declines under IT progress. Quantitatively, the model explains nearly all the divergence between routine and nonroutine labor in the period 1986-2014, as well as the mild decline of the overall labor share between 1986 and the early 2000s. However, the model with IT progress alone cannot explain the accelerated decline of labor income share after the early 2000s, suggesting that other factors, such as globalization, may have played a larger role in this period. Lastly, when nonconvex labor adjustment costs are present, the model generates a stepwise decline in routine labor hours, qualitatively consistent with the data. The timing of these trend adjustments can be significantly affected by aggregate productivity shocks and concentrated in recessions. The second chapter studies the implications of loss aversion on the business cycle dynamics of aggregate consumption and labor hours. Loss aversion refers to the fact that people are distinctively more sensitive to losses than to gains. Loss averse agents are very risk averse around the reference point and exhibit asymmetric responses to positive and negative income shocks. In an otherwise standard Real Business Cycle (RBC) model, I study loss aversion in both consumption alone and consumption-and-leisure together. My results indicate that how loss aversion affects business cycle dynamics depends critically on the nature of the reference point. If, for example, the reference point is status quo, loss aversion dramatically lowers the effective inter-temporal rate of substitution and induces excessive consumption smoothing. In contrast, if the reference point is fixed at a constant level, loss aversion generates a flat region in the decision rules and asymmetric impulse responses to technology shocks. Under a reasonable parametrization, loss aversion has the potential to generate asymmetric business cycles with deeper and more prolonged recessions.