2 resultados para Scale development
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Racism continues to thrive on the Internet. Yet, little is known about racism in online settings and the potential consequences. The purpose of this study was to develop the Perceived Online Racism Scale (PORS), the first measure to assess people’s perceived online racism experiences as they interact with others and consume information on the Internet. Items were developed through a multi-stage process based on literature review, focus-groups, and qualitative data collection. Based on a racially diverse large-scale sample (N = 1023), exploratory and confirmatory factor analyses provided support for a 30-item bifactor model with the following three factors: (a) 14-item PORS-IP (personal experiences of racism in online interactions), (b) 5-item PORS-V (observations of other racial/ethnic minorities being offended), and (c) 11-item PORS-I (consumption of online contents and information denigrating racial/ethnic minorities and highlighting racial injustice in society). Initial construct validity examinations suggest that PORS is significantly linked to psychological distress.
Resumo:
Unmanned aerial vehicles (UAVs) frequently operate in partially or entirely unknown environments. As the vehicle traverses the environment and detects new obstacles, rapid path replanning is essential to avoid collisions. This thesis presents a new algorithm called Hierarchical D* Lite (HD*), which combines the incremental algorithm D* Lite with a novel hierarchical path planning approach to replan paths sufficiently fast for real-time operation. Unlike current hierarchical planning algorithms, HD* does not require map corrections before planning a new path. Directional cost scale factors, path smoothing, and Catmull-Rom splines are used to ensure the resulting paths are feasible. HD* sacrifices optimality for real-time performance. Its computation time and path quality are dependent on the map size, obstacle density, sensor range, and any restrictions on planning time. For the most complex scenarios tested, HD* found paths within 10% of optimal in under 35 milliseconds.