7 resultados para Safety Climate Factors

em DRUM (Digital Repository at the University of Maryland)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over forty million foreign-born residents currently live in the United States. Latinos make up the largest population of immigrants living in the U.S. Previous research suggests that Latino immigrants often experience pre-migration stressors, such as traumatic experiences, political upheaval, and unplanned migration. These stressors may have a negative impact on immigrants’ post-migration mental health. Research also suggests that the post-migration climate of the receiving community may inform the connection between pre-migration experiences and post-migration mental health. The current study examined the relationship between Latino immigrants’ reasons for migration, migration planning, and pre-migration experience of political and/or interpersonal violence, and post-migration symptoms of psychological distress. In addition to examining the effect of these pre-migration factors, the current study also examined the community “climate” experienced by Latino immigrants post-migration by assessing the influence of three post-migration factors: 1) community support and engagement, 2) discrimination, and 3) employment. The study was a secondary analysis of data collected for the National Latino and Asian American Study, which focused on the mental health and service utilization of Latinos and Asian Americans. Participants included 1,629 Latino immigrants from across the United States. Results indicated that pre-migration experience of political and/or interpersonal trauma, post-migration experience of discrimination, and female sex were positively associated with psychological distress. Post-migration employment was negatively associated with psychological distress. In addition, discrimination modified the association between unplanned migration and psychological distress; the relationship between unplanned migration and psychological distress decreased for participants who reported more discrimination. Furthermore, employment modified the association between political and/or interpersonal trauma and psychological distress; the connection between trauma and psychological distress increased among those who reported having less employment. Recommendations for further research were presented. Policy and clinical practice implications were discussed, particularly given the current climate of high anti-immigrant sentiment and hostility in the U.S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how biodiversity spatially distribute over both the short term and long term, and what factors are affecting the distribution, are critical for modeling the spatial pattern of biodiversity as well as for promoting effective conservation planning and practices. This dissertation aims to examine factors that influence short-term and long-term avian distribution from the geographical sciences perspective. The research develops landscape level habitat metrics to characterize forest height heterogeneity and examines their efficacies in modelling avian richness at the continental scale. Two types of novel vegetation-height-structured habitat metrics are created based on second order texture algorithms and the concepts of patch-based habitat metrics. I correlate the height-structured metrics with the richness of different forest guilds, and also examine their efficacies in multivariate richness models. The results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of two forest bird guilds. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. The second and the third projects focus on analyzing centroids of avian distributions, and testing hypotheses regarding the direction and speed of these shifts. I first showcase the usefulness of centroids analysis for characterizing the distribution changes of a few case study species. Applying the centroid method on 57 permanent resident bird species, I show that multi-directional distribution shifts occurred in large number of studied species. I also demonstrate, plain birds are not shifting their distribution faster than mountain birds, contrary to the prediction based on climate change velocity hypothesis. By modelling the abundance change rate at regional level, I show that extreme climate events and precipitation measures associate closely with some of the long-term distribution shifts. This dissertation improves our understanding on bird habitat characterization for species richness modelling, and expands our knowledge on how avian populations shifted their ranges in North America responding to changing environments in the past four decades. The results provide an important scientific foundation for more accurate predictive species distribution modeling in future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maps depicting spatial pattern in the stability of summer greenness could advance understanding of how forest ecosystems will respond to global changes such as a longer growing season. Declining summer greenness, or “greendown”, is spectrally related to declining near-infrared reflectance and is observed in most remote sensing time series to begin shortly after peak greenness at the end of spring and extend until the beginning of leaf coloration in autumn,. Understanding spatial patterns in the strength of greendown has recently become possible with the advancement of Landsat phenology products, which show that greendown patterns vary at scales appropriate for linking these patterns to proposed environmental forcing factors. This study tested two non-mutually exclusive hypotheses for how leaf measurements and environmental factors correlate with greendown and decreasing NIR reflectance across sites. At the landscape scale, we used linear regression to test the effects of maximum greenness, elevation, slope, aspect, solar irradiance and canopy rugosity on greendown. Secondly, we used leaf chemical traits and reflectance observations to test the effect of nitrogen availability and intrinsic water use efficiency on leaf-level greendown, and landscape-level greendown measured from Landsat. The study was conducted using Quercus alba canopies across 21 sites of an eastern deciduous forest in North America between June and August 2014. Our linear model explained greendown variance with an R2=0.47 with maximum greenness as the greatest model effect. Subsequent models excluding one model effect revealed elevation and aspect were the two topographic factors that explained the greatest amount of greendown variance. Regression results also demonstrated important interactions between all three variables, with the greatest interaction showing that aspect had greater influence on greendown at sites with steeper slopes. Leaf-level reflectance was correlated with foliar δ13C (proxy for intrinsic water use efficiency), but foliar δ13C did not translate into correlations with landscape-level variation in greendown from Landsat. Therefore, we conclude that Landsat greendown is primarily indicative of landscape position, with a small effect of canopy structure, and no measureable effect of leaf reflectance. With this understanding of Landsat greendown we can better explain the effects of landscape factors on vegetation reflectance and perhaps on phenology, which would be very useful for studying phenology in the context of global climate change

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This quantitative research study utilized a binary logistic regression in a block design to investigate exogenous and endogenous factors influencing a teacher’s decision to make an intra-district move. The research focused on the following exogenous factors: classroom characteristics (size of class, percent minority, percent of students with an individualized education plan, and percent of students that are English language learners) and teacher characteristics (experience and gender). The following endogenous factors were examined: direct administrative influence (administrative support, rules enforced, school vision, teacher recognition, and job security) and indirect administrative influence (school climate, student misbehavior, parental support, materials, staff collaboration). The research was conducted by using information available from the National Center for Educational Statistics, the SASS from 2011-2012 and TFS from 2012-2013. The 2012-2013 Teacher Follow-up Survey identified 60 teachers who made a voluntary intra-district move. Results illustrate there is a statistically significant relationship between percentage of English Language Learners and overall job satisfaction and teachers choosing to make an intra-district move.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research concerns the conceptual and empirical relationship between environmental justice and social-ecological resilience as it relates to climate change vulnerability and adaptation. Two primary questions guided this work. First, what is the level of resilience and adaptive capacity for social-ecological systems that are characterized by environmental injustice in the face of climate change? And second, what is the role of an environmental justice approach in developing adaptation policies that will promote social-ecological resilience? These questions were investigated in three African American communities that are particularly vulnerable to flooding from sea-level rise on the Eastern Shore of the Chesapeake Bay. Using qualitative and quantitative methods, I found that in all three communities, religious faith and the church, rootedness in the landscape, and race relations were highly salient to community experience. The degree to which these common aspects of the communities have imparted adaptive capacity has changed over time. Importantly, a given social-ecological factor does not have the same effect on vulnerability in all communities; however, in all communities political isolation decreases adaptive capacity and increases vulnerability. This political isolation is at least partly due to procedural injustice, which occurs for a number of interrelated reasons. This research further revealed that while all stakeholders (policymakers, environmentalists, and African American community members) generally agree that justice needs to be increased on the Eastern Shore, stakeholder groups disagree about what a justice approach to adaptation would look like. When brought together at a workshop, however, these stakeholders were able to identify numerous challenges and opportunities for increasing justice. Resilience was assessed by the presence of four resilience factors: living with uncertainty, nurturing diversity, combining different types of knowledge, and creating opportunities for self-organization. Overall, these communities seem to have low resilience; however, there is potential for resilience to increase. Finally, I argue that the use of resilience theory for environmental justice communities is limited by the great breadth and depth of knowledge required to evaluate the state of the social-ecological system, the complexities of simultaneously promoting resilience at both the regional and local scale, and the lack of attention to issues of justice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms in the plant rhizosphere, the zone under the influence of roots, and phyllosphere, the aboveground plant habitat, exert a strong influence on plant growth, health, and protection. Tomatoes and cucumbers are important players in produce safety, and the microbial life on their surfaces may contribute to their fitness as hosts for foodborne pathogens such as Salmonella enterica and Listeria monocytogenes. External factors such as agricultural inputs and environmental conditions likely also play a major role. However, the relative contributions of the various factors at play concerning the plant surface microbiome remain obscure, although this knowledge could be applied to crop protection from plant and human pathogens. Recent advances in genomic technology have made investigations into the diversity and structure of microbial communities possible in many systems and at multiple scales. Using Illumina sequencing to profile particular regions of the 16S rRNA gene, this study investigates the influences of climate and crop management practices on the field-grown tomato and cucumber microbiome. The first research chapter (Chapter 3) involved application of 4 different soil amendments to a tomato field and profiling of harvest-time phyllosphere and rhizosphere microbial communities. Factors such as water activity, soil texture, and field location influenced microbial community structure more than soil amendment use, indicating that field conditions may exert more influence on the tomato microbiome than certain agricultural inputs. In Chapter 4, the impact of rain on tomato and cucumber-associated microbial community structures was evaluated. Shifts in bacterial community composition and structure were recorded immediately following rain events, an effect which was partially reversed after 4 days and was strongest on cucumber fruit surfaces. Chapter 5 focused on the contribution of insect visitors to the tomato microbiota, finding that insects introduced diverse bacterial taxa to the blossom and green tomato fruit microbiome. This study advances our understanding of the factors that influence the microbiomes of tomato and cucumber. Farms are complex environments, and untangling the interactions between farming practices, the environment, and microbial diversity will help us develop a comprehensive understanding of how microbial life, including foodborne pathogens, may be influenced by agricultural conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.