3 resultados para STRUCTURAL INFORMATION

em DRUM (Digital Repository at the University of Maryland)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ubiquitylation or covalent attachment of ubiquitin (Ub) to a variety of substrate proteins in cells is a versatile post-translational modification involved in the regulation of numerous cellular processes. The distinct messages that polyubiquitylation encodes are attributed to the multitude of conformations possible through attachment of ubiquitin monomers within a polyubiquitin chain via a specific lysine residue. Thus the hypothesis is that linkage defines polyubiquitin conformation which in turn determines specific recognition by cellular receptors. Ubiquitylation of membrane surface receptor proteins plays a very important role in regulating receptor-mediated endocytosis as well as endosomal sorting for lysosomal degradation. Epsin1 is an endocytic adaptor protein with three tandem UIMs (Ubiquitin Interacting Motifs) which are responsible for the highly specific interaction between epsin and ubiquitylated receptors. Epsin1 is also an oncogenic protein and its expression is upregulated in some types of cancer. Recently it has been shown that novel K11 and K63 mixed-linkage polyubiquitin chains serve as internalization signal for MHC I (Major Histocompatibility Complex I) molecule through their association with the tUIMs of epsin1. However the molecular mode of action and structural details of the interaction between polyubiquitin chains on receptors and tUIMs of epsin1 is yet to be determined. This information is crucial for the development of anticancer therapeutics targeting epsin1. The molecular basis for the linkage-specific recognition of K11 and K63 mixed-linkage polyubiquitin chains by the tandem UIMs of the endocytic adaptor protein epsin1 is investigated using a combination of NMR methods.