4 resultados para SQUARK DECAYS
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In this dissertation I quantify residential behavior response to interventions designed to reduce electricity demand at different periods of the day. In the first chapter, I examine the effect of information provision coupled with bimonthly billing, monthly billing, and in-home displays, as well as a time-of-use (TOU) pricing scheme to measure consumption over each month of the Irish Consumer Behavior Trial. I find that time-of-use pricing with real time usage information reduces electricity usage up to 8.7 percent during peak times at the start of the trial but the effect decays over the first three months and after three months the in-home display group is indistinguishable from the monthly treatment group. Monthly and bi-monthly billing treatments are not found to be statistically different from another. These findings suggest that increasing billing reports to the monthly level may be more cost effective for electricity generators who wish to decrease expenses and consumption, rather than providing in-home displays. In the following chapter, I examine the response of residential households after exposure to time of use tariffs at different hours of the day. I find that these treatments reduce electricity consumption during peak hours by almost four percent, significantly lowering demand. Within the model, I find evidence of overall conservation in electricity used. In addition, weekday peak reductions appear to carry over to the weekend when peak pricing is not present, suggesting changes in consumer habit. The final chapter of my dissertation imposes a system wide time of use plan to analyze the potential reduction in carbon emissions from load shifting based on the Ireland and Northern Single Electricity Market. I find that CO2 emissions savings are highest during the winter months when load demand is highest and dirtier power plants are scheduled to meet peak demand. TOU pricing allows for shifting in usage from peak usage to off peak usage and this shift in load can be met with cleaner and cheaper generated electricity from imports, high efficiency gas units, and hydro units.
Resumo:
Present the measurement of a rare Standard Model processes, pp →W±γγ for the leptonic decays of the W±. The measurement is made with 19.4 fb−1 of 8 TeV data collected in 2012 by the CMS experiment. The measured cross section is consistent with the Standard Model prediction and has a significance of 2.9σ. Limits are placed on dimension-8 Effective Field Theories of anomalous Quartic Gauge Couplings. The analysis has particularly sensitivity to the fT,0 coupling and a 95% confidence limit is placed at −35.9 < fT,0/Λ4< 36.7 TeV−4. Studies of the pp →Zγγ process are also presented. The Zγγ signal is in strict agreement with the Standard Model and has a significance of 5.9σ.
Resumo:
The extreme sensitivity of the mass of the Higgs boson to quantum corrections from high mass states, makes it 'unnaturally' light in the standard model. This 'hierarchy problem' can be solved by symmetries, which predict new particles related, by the symmetry, to standard model fields. The Large Hadron Collider (LHC) can potentially discover these new particles, thereby finding the solution to the hierarchy problem. However, the dynamics of the Higgs boson is also sensitive to this new physics. We show that in many scenarios the Higgs can be a complementary and powerful probe of the hierarchy problem at the LHC and future colliders. If the top quark partners carry the color charge of the strong nuclear force, the production of Higgs pairs is affected. This effect is tightly correlated with single Higgs production, implying that only modest enhancements in di-Higgs production occur when the top partners are heavy. However, if the top partners are light, we show that di-Higgs production is a useful complementary probe to single Higgs production. We verify this result in the context of a simplified supersymmetric model. If the top partners do not carry color charge, their direct production is greatly reduced. Nevertheless, we show that such scenarios can be revealed through Higgs dynamics. We find that many color neutral frameworks leave observable traces in Higgs couplings, which, in some cases, may be the only way to probe these theories at the LHC. Some realizations of the color neutral framework also lead to exotic decays of the Higgs with displaced vertices. We show that these decays are so striking that the projected sensitivity for these searches, at hadron colliders, is comparable to that of searches for colored top partners. Taken together, these three case studies show the efficacy of the Higgs as a probe of naturalness.
Resumo:
Coprime and nested sampling are well known deterministic sampling techniques that operate at rates significantly lower than the Nyquist rate, and yet allow perfect reconstruction of the spectra of wide sense stationary signals. However, theoretical guarantees for these samplers assume ideal conditions such as synchronous sampling, and ability to perfectly compute statistical expectations. This thesis studies the performance of coprime and nested samplers in spatial and temporal domains, when these assumptions are violated. In spatial domain, the robustness of these samplers is studied by considering arrays with perturbed sensor locations (with unknown perturbations). Simplified expressions for the Fisher Information matrix for perturbed coprime and nested arrays are derived, which explicitly highlight the role of co-array. It is shown that even in presence of perturbations, it is possible to resolve $O(M^2)$ under appropriate conditions on the size of the grid. The assumption of small perturbations leads to a novel ``bi-affine" model in terms of source powers and perturbations. The redundancies in the co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine problem to a linear underdetermined (sparse) problem in source powers. This thesis also studies the robustness of coprime sampling to finite number of samples and sampling jitter, by analyzing their effects on the quality of the estimated autocorrelation sequence. A variety of bounds on the error introduced by such non ideal sampling schemes are computed by considering a statistical model for the perturbation. They indicate that coprime sampling leads to stable estimation of the autocorrelation sequence, in presence of small perturbations. Under appropriate assumptions on the distribution of WSS signals, sharp bounds on the estimation error are established which indicate that the error decays exponentially with the number of samples. The theoretical claims are supported by extensive numerical experiments.