2 resultados para Roof top PV

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green roofs are one solution to stormwater runoff which is a major environmental problem. However, the majority of green roofs are primarily implemented on flat roofed commercial buildings and not residential homes with sloped roofs. Team SO GREEN designed a light-weight green roof system retrofit for residential homes. Between June and November 2014, green roof performance data was collected and compared between the designed sloped roofs and a non-sloped control. The sloped design performed well and one test slope was improved with a recirculating irrigation system. An economic analysis was made and a focus group determined preliminary consumer interest, aesthetic preferences, and barriers. This study enriches the body of knowledge regarding bringing green roof systems to the residential home market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar cell relies on its ability to turn photons into current. Because short wavelength photons are typically absorbed near the top surface of a cell, the generated charge carriers recombine before being collected. But when a layer of quantum dots (nanoscale semiconductor particles) is placed on top of the cell, it absorbs short wavelength photons and emits them into the cell at longer wavelengths, which enables more efficient carrier collection. However, the resulting power conversion efficiency of the system depends critically on the quantum dot luminescence efficiency – the nature of this relationship was previously unknown. Our calculations suggest that a quantum dot layer must have high luminescence efficiency (at least 80%) to improve the current output of existing photovoltaic (PV) cells; otherwise, it may worsen the cell’s efficiency. Our quantum dot layer (using quantum dots with over 85% quantum yield) slightly reduced the efficiency of our PV cells. We observed a decrease in short circuit current of a commercial-grade cell from 0.1977 A to 0.1826 A, a 7.6% drop, suggesting that improved optical coupling from the quantum dot emission into the solar cell is needed. With better optical coupling, we predict current enhancements between ~6% and ~8% for a solar cell that already has an antireflection coating. Such improvements could have important commercial impacts if the coating could be deployed in a scalable fashion.