2 resultados para Rome--Histoire militaire--265-30 av. J.-C.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Title of Document: AN ANALYSIS OF THE IMPLEMENTATION AND PERCEIVED EFFECTIVENESS OF THE SCHOOLMAX FAMILY PORTAL Warren Wesley Watts, Doctor of Education, 2015 Directed By: Margaret J. McLaughlin, Ph.D. Department of Counseling, Higher Education and Special Education School districts have spent millions of dollars implementing student information systems that offer family portals with web-based access to parents and students. One of the main purposes of these systems is to improve school-to-home communication. Research has shown that when school-to-home communication is implemented effectively, parent involvement improves and student achievement increases (Epstein, 2001). The purpose of the study was to (a) understand why parents used or refrained from using the family portal and (b) determine what barriers to use might exist. To this end, this descriptive study identified the information parent users accessed in the SchoolMAX family portal, determined how frequently parents accessed the portal, and ascertained whether parents perceived an increase in communication with their children about academic matters after they began accessing the portal. Finally, the study sought to identify whether barriers existed that prevented parents from using the family portal. The inquiry employed three data sources to answer the aforementioned queries. These sources included (a) a survey sent electronically to 19,108 parents who registered online for the SchoolMAX family portal; (b) SchoolMAX portal usage data from the student information system for system usage between January 1, 2015 and June 30, 2015; and (c) a paper survey sent to 691 parents of students that had never used the SchoolMAX family portal in one elementary school, one middle school and one high school that were representative of other schools in the district. Survey results indicated that parents at all grade levels used the family portal. Usage data also confirmed that approximately 19% of the students had parents who monitored their progress through the family portal. Usage data also showed that parents were monitoring approximately 25% of students in secondary schools (6th – 12th grade) and 16% of students in elementary schools. Of the wide menu of resources available through the SchoolMAX family portal, parents used three areas most frequently: attendance, daily grades, and report cards. Approximately 70% of parents responded that their communication had improved with their children about academic matters since they started using the SchoolMAX family portal, and 90% of parents responded that the SchoolMAX family portal was an effective or somewhat effective tool. Parents also expressed interest in the addition of additional information to the SchoolMAX family portal. Specifically, the top three additions parents wanted to see included homework assignments, high stakes test scores, and graduation requirements. Parents also reported that 92% of them spoke to their children at least 2 to 3 times per week about academics. Due to the low response rate of the parent non-user survey, potential barriers to using the SchoolMAX family portal could not be addressed in this study. However, this issue may be a useful research topic in a future study. Keywords: school to home communication, student information systems, family portal, parent portal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructures are highly attractive for future electrical energy storage devices because they enable large surface area and short ion transport time through thin electrode layers for high power devices. Significant enhancement in power density of batteries has been achieved by nano-engineered structures, particularly anode and cathode nanostructures spatially separated far apart by a porous membrane and/or a defined electrolyte region. A self-aligned nanostructured battery fully confined within a single nanopore presents a powerful platform to determine the rate performance and cyclability limits of nanostructured storage devices. Atomic layer deposition (ALD) has enabled us to create and evaluate such structures, comprised of nanotubular electrodes and electrolyte confined within anodic aluminum oxide (AAO) nanopores. The V2O5- V2O5 symmetric nanopore battery displays exceptional power-energy performance and cyclability when tested as a massively parallel device (~2billion/cm2), each with ~1m3 volume (~1fL). Cycled between 0.2V and 1.8V, this full cell has capacity retention of 95% at 5C rate and 46% at 150C, with more than 1000 charge/discharge cycles. These results demonstrate the promise of ultrasmall, self-aligned/regular, densely packed nanobattery structures as a testbed to study ionics and electrodics at the nanoscale with various geometrical modifications and as a building block for high performance energy storage systems[1, 2]. Further increase of full cell output potential is also demonstrated in asymmetric full cell configurations with various low voltage anode materials. The asymmetric full cell nanopore batteries, comprised of V2O5 as cathode and prelithiated SnO2 or anatase phase TiO2 as anode, with integrated nanotubular metal current collectors underneath each nanotubular storage electrode, also enabled by ALD. By controlling the amount of lithium ion prelithiated into SnO2 anode, we can tune full cell output voltage in the range of 0.3V and 3V. This asymmetric nanopore battery array displays exceptional rate performance and cyclability. When cycled between 1V and 3V, it has capacity retention of approximately 73% at 200C rate compared to 1C, with only 2% capacity loss after more than 500 charge/discharge cycles. With increased full cell output potential, the asymmetric V2O5-SnO2 nanopore battery shows significantly improved energy and power density. This configuration presents a more realistic test - through its asymmetric (vs symmetric) configuration – of performance and cyclability in nanoconfined environment. This dissertation covers (1) Ultra small electrochemical storage platform design and fabrication, (2) Electron and ion transport in nanostructured electrodes inside a half cell configuration, (3) Ion transport between anode and cathode in confined nanochannels in symmetric full cells, (4) Scale up energy and power density with geometry optimization and low voltage anode materials in asymmetric full cell configurations. As a supplement, selective growth of ALD to improve graphene conductance will also be discussed[3]. References: 1. Liu, C., et al., (Invited) A Rational Design for Batteries at Nanoscale by Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 23-30. 2. Liu, C.Y., et al., An all-in-one nanopore battery array. Nature Nanotechnology, 2014. 9(12): p. 1031-1039. 3. Liu, C., et al., Improving Graphene Conductivity through Selective Atomic Layer Deposition. ECS Transactions, 2015. 69(7): p. 133-138.