6 resultados para Right of way (Traffic regulations)

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This design-research thesis suggests that the improvement of North East Street performances by using Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices. Heavily used by a variety of users, often conflicting with one another, University of Maryland Campus Drive would benefit from a major planning and design amelioration to meet the increasing demands of serving as a city main street. The goal of this thesis project is to prioritize the benefits for pedestrians in the right-of-way and improve the pedestrian experience. This goal also responds to the recent North East Street Extension Phrase I of economic renaissances. The goal of this design-research thesis will be achieved focusing on four aspects. First, the plans and designs will suggest to building mixed use blocks, increase the diversity of street economic types and convenience of people’s living. Second, design and plans will propose bike lanes, separate driving lanes from sidewalks and bike lanes by street tree planters, and narrow driving lanes to reduce vehicular traffic volume and speed in order to reduce pedestrian and vehicle conflicts. Third, plans and designs will introduce bioswales, living walls and raingardens to treat and reuse rain water. Finally, the plans and designs will seek to preserve local culture and history by adding murals and farmers market. The outcome of the design-research thesis project is expected to serve as an example of implementing Complete Streets, Green Street, Place Making and Context Sensitive Solution principles and practices in urban landscape, where transportation, environment and social needs interact with each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we introduce a new mathematical tool for optimization of routes, topology design, and energy efficiency in wireless sensor networks. We introduce a vector field formulation that models communication in the network, and routing is performed in the direction of this vector field at every location of the network. The magnitude of the vector field at every location represents the density of amount of data that is being transited through that location. We define the total communication cost in the network as the integral of a quadratic form of the vector field over the network area. With the above formulation, we introduce a mathematical machinery based on partial differential equations very similar to the Maxwell's equations in electrostatic theory. We show that in order to minimize the cost, the routes should be found based on the solution of these partial differential equations. In our formulation, the sensors are sources of information, and they are similar to the positive charges in electrostatics, the destinations are sinks of information and they are similar to negative charges, and the network is similar to a non-homogeneous dielectric media with variable dielectric constant (or permittivity coefficient). In one of the applications of our mathematical model based on the vector fields, we offer a scheme for energy efficient routing. Our routing scheme is based on changing the permittivity coefficient to a higher value in the places of the network where nodes have high residual energy, and setting it to a low value in the places of the network where the nodes do not have much energy left. Our simulations show that our method gives a significant increase in the network life compared to the shortest path and weighted shortest path schemes. Our initial focus is on the case where there is only one destination in the network, and later we extend our approach to the case where there are multiple destinations in the network. In the case of having multiple destinations, we need to partition the network into several areas known as regions of attraction of the destinations. Each destination is responsible for collecting all messages being generated in its region of attraction. The complexity of the optimization problem in this case is how to define regions of attraction for the destinations and how much communication load to assign to each destination to optimize the performance of the network. We use our vector field model to solve the optimization problem for this case. We define a vector field, which is conservative, and hence it can be written as the gradient of a scalar field (also known as a potential field). Then we show that in the optimal assignment of the communication load of the network to the destinations, the value of that potential field should be equal at the locations of all the destinations. Another application of our vector field model is to find the optimal locations of the destinations in the network. We show that the vector field gives the gradient of the cost function with respect to the locations of the destinations. Based on this fact, we suggest an algorithm to be applied during the design phase of a network to relocate the destinations for reducing the communication cost function. The performance of our proposed schemes is confirmed by several examples and simulation experiments. In another part of this work we focus on the notions of responsiveness and conformance of TCP traffic in communication networks. We introduce the notion of responsiveness for TCP aggregates and define it as the degree to which a TCP aggregate reduces its sending rate to the network as a response to packet drops. We define metrics that describe the responsiveness of TCP aggregates, and suggest two methods for determining the values of these quantities. The first method is based on a test in which we drop a few packets from the aggregate intentionally and measure the resulting rate decrease of that aggregate. This kind of test is not robust to multiple simultaneous tests performed at different routers. We make the test robust to multiple simultaneous tests by using ideas from the CDMA approach to multiple access channels in communication theory. Based on this approach, we introduce tests of responsiveness for aggregates, and call it CDMA based Aggregate Perturbation Method (CAPM). We use CAPM to perform congestion control. A distinguishing feature of our congestion control scheme is that it maintains a degree of fairness among different aggregates. In the next step we modify CAPM to offer methods for estimating the proportion of an aggregate of TCP traffic that does not conform to protocol specifications, and hence may belong to a DDoS attack. Our methods work by intentionally perturbing the aggregate by dropping a very small number of packets from it and observing the response of the aggregate. We offer two methods for conformance testing. In the first method, we apply the perturbation tests to SYN packets being sent at the start of the TCP 3-way handshake, and we use the fact that the rate of ACK packets being exchanged in the handshake should follow the rate of perturbations. In the second method, we apply the perturbation tests to the TCP data packets and use the fact that the rate of retransmitted data packets should follow the rate of perturbations. In both methods, we use signature based perturbations, which means packet drops are performed with a rate given by a function of time. We use analogy of our problem with multiple access communication to find signatures. Specifically, we assign orthogonal CDMA based signatures to different routers in a distributed implementation of our methods. As a result of orthogonality, the performance does not degrade because of cross interference made by simultaneously testing routers. We have shown efficacy of our methods through mathematical analysis and extensive simulation experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authentication plays an important role in how we interact with computers, mobile devices, the web, etc. The idea of authentication is to uniquely identify a user before granting access to system privileges. For example, in recent years more corporate information and applications have been accessible via the Internet and Intranet. Many employees are working from remote locations and need access to secure corporate files. During this time, it is possible for malicious or unauthorized users to gain access to the system. For this reason, it is logical to have some mechanism in place to detect whether the logged-in user is the same user in control of the user's session. Therefore, highly secure authentication methods must be used. We posit that each of us is unique in our use of computer systems. It is this uniqueness that is leveraged to "continuously authenticate users" while they use web software. To monitor user behavior, n-gram models are used to capture user interactions with web-based software. This statistical language model essentially captures sequences and sub-sequences of user actions, their orderings, and temporal relationships that make them unique by providing a model of how each user typically behaves. Users are then continuously monitored during software operations. Large deviations from "normal behavior" can possibly indicate malicious or unintended behavior. This approach is implemented in a system called Intruder Detector (ID) that models user actions as embodied in web logs generated in response to a user's actions. User identification through web logs is cost-effective and non-intrusive. We perform experiments on a large fielded system with web logs of approximately 4000 users. For these experiments, we use two classification techniques; binary and multi-class classification. We evaluate model-specific differences of user behavior based on coarse-grain (i.e., role) and fine-grain (i.e., individual) analysis. A specific set of metrics are used to provide valuable insight into how each model performs. Intruder Detector achieves accurate results when identifying legitimate users and user types. This tool is also able to detect outliers in role-based user behavior with optimal performance. In addition to web applications, this continuous monitoring technique can be used with other user-based systems such as mobile devices and the analysis of network traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Travel demand models are important tools used in the analysis of transportation plans, projects, and policies. The modeling results are useful for transportation planners making transportation decisions and for policy makers developing transportation policies. Defining the level of detail (i.e., the number of roads) of the transport network in consistency with the travel demand model’s zone system is crucial to the accuracy of modeling results. However, travel demand modelers have not had tools to determine how much detail is needed in a transport network for a travel demand model. This dissertation seeks to fill this knowledge gap by (1) providing methodology to define an appropriate level of detail for a transport network in a given travel demand model; (2) implementing this methodology in a travel demand model in the Baltimore area; and (3) identifying how this methodology improves the modeling accuracy. All analyses identify the spatial resolution of the transport network has great impacts on the modeling results. For example, when compared to the observed traffic data, a very detailed network underestimates traffic congestion in the Baltimore area, while a network developed by this dissertation provides a more accurate modeling result of the traffic conditions. Through the evaluation of the impacts a new transportation project has on both networks, the differences in their analysis results point out the importance of having an appropriate level of network detail for making improved planning decisions. The results corroborate a suggested guideline concerning the development of a transport network in consistency with the travel demand model’s zone system. To conclude this dissertation, limitations are identified in data sources and methodology, based on which a plan of future studies is laid out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation explores three aspects of the economics and policy issues surrounding retail payments (low-value frequent payments): the microeconomic aspect, by measuring costs associated with retail payment instruments; the macroeconomic aspect, by quantifying the impact of the use of electronic rather than paper-based payment instruments on consumption and GDP; and the policy aspect, by identifying barriers that keep countries stuck with outdated payment systems, and recommending policy interventions to move forward with payments modernization. Payment system modernization has become a prominent part of the financial sector reform agenda in many advanced and developing countries. Greater use of electronic payments rather than cash and other paper-based instruments would have important economic and social benefits, including lower costs and thereby increased economic efficiency and higher incomes, while broadening access to the financial system, notably for people with moderate and low incomes. The dissertation starts with a general introduction on retail payments. Chapter 1 develops a theoretical model for measuring payments costs, and applies the model to Guyana—an emerging market in the midst of the transition from paper to electronic payments. Using primary survey data from Guyanese consumers, the results of the analysis indicate that annual costs related to the use of cash by consumers reach 2.5 percent of the country’s GDP. Switching to electronic payment instruments would provide savings amounting to 1 percent of GDP per year. Chapter 2 broadens the analysis to calculate the macroeconomic impacts of a move to electronic payments. Using a unique panel dataset of 76 countries across the 17-year span from 1998 to 2014 and a pooled OLS country fixed effects model, Chapter 2 finds that on average, use of debit and credit cards contribute USD 16.2 billion to annual global consumption, and USD 160 billion to overall annual global GDP. Chapter 3 provides an in-depth assessment of the Albanian payment cards and remittances market and recommends a set of incentives and regulations (both carrots and sticks) that would allow the country to modernize its payment system. Finally, the conclusion summarizes the lessons of the dissertation’s research and brings forward issues to be explored by future research in the retail payments area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the extensive implementation of Superstreets on congested arterials, reliable methodologies for such designs remain unavailable. The purpose of this research is to fill the information gap by offering reliable tools to assist traffic professionals in the design of Superstreets with and without signal control. The entire tool developed in this thesis consists of three models. The first model is used to determine the minimum U-turn offset length for an Un-signalized Superstreet, given the arterial headway distribution of the traffic flows and the distribution of critical gaps among drivers. The second model is designed to estimate the queue size and its variation on each critical link in a signalized Superstreet, based on the given signal plan and the range of observed volumes. Recognizing that the operational performance of a Superstreet cannot be achieved without an effective signal plan, the third model is developed to produce a signal optimization method that can generate progression offsets for heavy arterial flows moving into and out of such an intersection design.