1 resultado para Restricted Boltzmann Machine
em DRUM (Digital Repository at the University of Maryland)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (8)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (126)
- CentAUR: Central Archive University of Reading - UK (80)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (33)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (8)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (10)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Greenwich Academic Literature Archive - UK (39)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (85)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (11)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (101)
- Queensland University of Technology - ePrints Archive (112)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (84)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (4)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (23)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
- WestminsterResearch - UK (2)
Resumo:
(Deep) neural networks are increasingly being used for various computer vision and pattern recognition tasks due to their strong ability to learn highly discriminative features. However, quantitative analysis of their classication ability and design philosophies are still nebulous. In this work, we use information theory to analyze the concatenated restricted Boltzmann machines (RBMs) and propose a mutual information-based RBM neural networks (MI-RBM). We develop a novel pretraining algorithm to maximize the mutual information between RBMs. Extensive experimental results on various classication tasks show the eectiveness of the proposed approach.