4 resultados para Repeated Averages of Real-Valued Functions
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The real-quaternionic indicator, also called the $\delta$ indicator, indicates if a self-conjugate representation is of real or quaternionic type. It is closely related to the Frobenius-Schur indicator, which we call the $\varepsilon$ indicator. The Frobenius-Schur indicator $\varepsilon(\pi)$ is known to be given by a particular value of the central character. We would like a similar result for the $\delta$ indicator. When $G$ is compact, $\delta(\pi)$ and $\varepsilon(\pi)$ coincide. In general, they are not necessarily the same. In this thesis, we will give a relation between the two indicators when $G$ is a real reductive algebraic group. This relation also leads to a formula for $\delta(\pi)$ in terms of the central character. For the second part, we consider the construction of the local Langlands correspondence of $GL(2,F)$ when $F$ is a non-Archimedean local field with odd residual characteristics. By re-examining the construction, we provide new proofs to some important properties of the correspondence. Namely, the construction is independent of the choice of additive character in the theta correspondence.
Resumo:
Image (Video) retrieval is an interesting problem of retrieving images (videos) similar to the query. Images (Videos) are represented in an input (feature) space and similar images (videos) are obtained by finding nearest neighbors in the input representation space. Numerous input representations both in real valued and binary space have been proposed for conducting faster retrieval. In this thesis, we present techniques that obtain improved input representations for retrieval in both supervised and unsupervised settings for images and videos. Supervised retrieval is a well known problem of retrieving same class images of the query. We address the practical aspects of achieving faster retrieval with binary codes as input representations for the supervised setting in the first part, where binary codes are used as addresses into hash tables. In practice, using binary codes as addresses does not guarantee fast retrieval, as similar images are not mapped to the same binary code (address). We address this problem by presenting an efficient supervised hashing (binary encoding) method that aims to explicitly map all the images of the same class ideally to a unique binary code. We refer to the binary codes of the images as `Semantic Binary Codes' and the unique code for all same class images as `Class Binary Code'. We also propose a new class based Hamming metric that dramatically reduces the retrieval times for larger databases, where only hamming distance is computed to the class binary codes. We also propose a Deep semantic binary code model, by replacing the output layer of a popular convolutional Neural Network (AlexNet) with the class binary codes and show that the hashing functions learned in this way outperforms the state of the art, and at the same time provide fast retrieval times. In the second part, we also address the problem of supervised retrieval by taking into account the relationship between classes. For a given query image, we want to retrieve images that preserve the relative order i.e. we want to retrieve all same class images first and then, the related classes images before different class images. We learn such relationship aware binary codes by minimizing the similarity between inner product of the binary codes and the similarity between the classes. We calculate the similarity between classes using output embedding vectors, which are vector representations of classes. Our method deviates from the other supervised binary encoding schemes as it is the first to use output embeddings for learning hashing functions. We also introduce new performance metrics that take into account the related class retrieval results and show significant gains over the state of the art. High Dimensional descriptors like Fisher Vectors or Vector of Locally Aggregated Descriptors have shown to improve the performance of many computer vision applications including retrieval. In the third part, we will discuss an unsupervised technique for compressing high dimensional vectors into high dimensional binary codes, to reduce storage complexity. In this approach, we deviate from adopting traditional hyperplane hashing functions and instead learn hyperspherical hashing functions. The proposed method overcomes the computational challenges of directly applying the spherical hashing algorithm that is intractable for compressing high dimensional vectors. A practical hierarchical model that utilizes divide and conquer techniques using the Random Select and Adjust (RSA) procedure to compress such high dimensional vectors is presented. We show that our proposed high dimensional binary codes outperform the binary codes obtained using traditional hyperplane methods for higher compression ratios. In the last part of the thesis, we propose a retrieval based solution to the Zero shot event classification problem - a setting where no training videos are available for the event. To do this, we learn a generic set of concept detectors and represent both videos and query events in the concept space. We then compute similarity between the query event and the video in the concept space and videos similar to the query event are classified as the videos belonging to the event. We show that we significantly boost the performance using concept features from other modalities.
Resumo:
Experiments with ultracold atoms in optical lattice have become a versatile testing ground to study diverse quantum many-body Hamiltonians. A single-band Bose-Hubbard (BH) Hamiltonian was first proposed to describe these systems in 1998 and its associated quantum phase-transition was subsequently observed in 2002. Over the years, there has been a rapid progress in experimental realizations of more complex lattice geometries, leading to more exotic BH Hamiltonians with contributions from excited bands, and modified tunneling and interaction energies. There has also been interesting theoretical insights and experimental studies on “un- conventional” Bose-Einstein condensates in optical lattices and predictions of rich orbital physics in higher bands. In this thesis, I present our results on several multi- band BH models and emergent quantum phenomena. In particular, I study optical lattices with two local minima per unit cell and show that the low energy states of a multi-band BH Hamiltonian with only pairwise interactions is equivalent to an effec- tive single-band Hamiltonian with strong three-body interactions. I also propose a second method to create three-body interactions in ultracold gases of bosonic atoms in a optical lattice. In this case, this is achieved by a careful cancellation of two contributions in the pair-wise interaction between the atoms, one proportional to the zero-energy scattering length and a second proportional to the effective range. I subsequently study the physics of Bose-Einstein condensation in the second band of a double-well 2D lattice and show that the collision aided decay rate of the con- densate to the ground band is smaller than the tunneling rate between neighboring unit cells. Finally, I propose a numerical method using the discrete variable repre- sentation for constructing real-valued Wannier functions localized in a unit cell for optical lattices. The developed numerical method is general and can be applied to a wide array of optical lattice geometries in one, two or three dimensions.
Resumo:
In quantitative risk analysis, the problem of estimating small threshold exceedance probabilities and extreme quantiles arise ubiquitously in bio-surveillance, economics, natural disaster insurance actuary, quality control schemes, etc. A useful way to make an assessment of extreme events is to estimate the probabilities of exceeding large threshold values and extreme quantiles judged by interested authorities. Such information regarding extremes serves as essential guidance to interested authorities in decision making processes. However, in such a context, data are usually skewed in nature, and the rarity of exceedance of large threshold implies large fluctuations in the distribution's upper tail, precisely where the accuracy is desired mostly. Extreme Value Theory (EVT) is a branch of statistics that characterizes the behavior of upper or lower tails of probability distributions. However, existing methods in EVT for the estimation of small threshold exceedance probabilities and extreme quantiles often lead to poor predictive performance in cases where the underlying sample is not large enough or does not contain values in the distribution's tail. In this dissertation, we shall be concerned with an out of sample semiparametric (SP) method for the estimation of small threshold probabilities and extreme quantiles. The proposed SP method for interval estimation calls for the fusion or integration of a given data sample with external computer generated independent samples. Since more data are used, real as well as artificial, under certain conditions the method produces relatively short yet reliable confidence intervals for small exceedance probabilities and extreme quantiles.