4 resultados para Remediation time estimation

em DRUM (Digital Repository at the University of Maryland)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation comprises three chapters. The first chapter motivates the use of a novel data set combining survey and administrative sources for the study of internal labor migration. By following a sample of individuals from the American Community Survey (ACS) across their employment outcomes over time according to the Longitudinal Employer-Household Dynamics (LEHD) database, I construct a measure of geographic labor mobility that allows me to exploit information about individuals prior to their move. This enables me to explore aspects of the migration decision, such as homeownership and employment status, in ways that have not previously been possible. In the second chapter, I use this data set to test the theory that falling home prices affect a worker’s propensity to take a job in a different metropolitan area from where he is currently located. Employing a within-CBSA and time estimation that compares homeowners to renters in their propensities to relocate for jobs, I find that homeowners who have experienced declines in the nominal value of their homes are approximately 12% less likely than average to take a new job in a location outside of the metropolitan area where they currently reside. This evidence is consistent with the hypothesis that housing lock-in has contributed to the decline in labor mobility of homeowners during the recent housing bust. The third chapter focuses on a sample of unemployed workers in the same data set, in order to compare the unemployment durations of those who find subsequent employment by relocating to a new metropolitan area, versus those who find employment in their original location. Using an instrumental variables strategy to address the endogeneity of the migration decision, I find that out-migrating for a new job significantly reduces the time to re-employment. These results stand in contrast to OLS estimates, which suggest that those who move have longer unemployment durations. This implies that those who migrate for jobs in the data may be particularly disadvantaged in their ability to find employment, and thus have strong short-term incentives to relocate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. Motion capture of a free flying insect is considered by using three synchronized high-speed cameras. A solid finite element representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. An objective function is formulated, and various shape difference definitions are considered. The proposed methodology is first studied for a synthetic case of a flexible cantilever structure undergoing large deformations, and then applied to a Manduca Sexta (hawkmoth) in free flight. The three-dimensional motions of this flapping system are reconstructed from image date collected by using three cameras. The complete deformation geometry of this system is analyzed. Finally, a computational investigation is carried out to understand the flow physics and aerodynamic performance by prescribing the body and wing motions in a fluid-body code. This thesis work contains one of the first set of such motion visualization and deformation analyses carried out for a hawkmoth in free flight. The tools and procedures used in this work are widely applicable to the studies of other flying animals with flexible wings as well as synthetic systems with flexible body elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to increasing integration density and operating frequency of today's high performance processors, the temperature of a typical chip can easily exceed 100 degrees Celsius. However, the runtime thermal state of a chip is very hard to predict and manage due to the random nature in computing workloads, as well as the process, voltage and ambient temperature variability (together called PVT variability). The uneven nature (both in time and space) of the heat dissipation of the chip could lead to severe reliability issues and error-prone chip behavior (e.g. timing errors). Many dynamic power/thermal management techniques have been proposed to address this issue such as dynamic voltage and frequency scaling (DVFS), clock gating and etc. However, most of such techniques require accurate knowledge of the runtime thermal state of the chip to make efficient and effective control decisions. In this work we address the problem of tracking and managing the temperature of microprocessors which include the following sub-problems: (1) how to design an efficient sensor-based thermal tracking system on a given design that could provide accurate real-time temperature feedback; (2) what statistical techniques could be used to estimate the full-chip thermal profile based on very limited (and possibly noise-corrupted) sensor observations; (3) how do we adapt to changes in the underlying system's behavior, since such changes could impact the accuracy of our thermal estimation. The thermal tracking methodology proposed in this work is enabled by on-chip sensors which are already implemented in many modern processors. We first investigate the underlying relationship between heat distribution and power consumption, then we introduce an accurate thermal model for the chip system. Based on this model, we characterize the temperature correlation that exists among different chip modules and explore statistical approaches (such as those based on Kalman filter) that could utilize such correlation to estimate the accurate chip-level thermal profiles in real time. Such estimation is performed based on limited sensor information because sensors are usually resource constrained and noise-corrupted. We also took a further step to extend the standard Kalman filter approach to account for (1) nonlinear effects such as leakage-temperature interdependency and (2) varying statistical characteristics in the underlying system model. The proposed thermal tracking infrastructure and estimation algorithms could consistently generate accurate thermal estimates even when the system is switching among workloads that have very distinct characteristics. Through experiments, our approaches have demonstrated promising results with much higher accuracy compared to existing approaches. Such results can be used to ensure thermal reliability and improve the effectiveness of dynamic thermal management techniques.