3 resultados para Recorded demonstrations

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 17th and 18th centuries, the European hunting horn was an instrument associated with the thrill of the chase, rustic scenes, and the pageantry of royal hunts. The sound of this horn and the music that evolved from its heritage would inspire composers writing for the modern horn. TALLY HOrn! Echoes of Hoofbeats and Haunts: Recorded Selections for Horn and Piano are two compact discs of works for horn and piano as well as solo horn reflecting this association with the hunt and include additional works of expressive contrast – lyrical pieces and nocturnes. Nine of the pieces reflect the modern horn’s beginnings and they are Abbot’s Alla Caccia, Berge’s Horn-Lokk, Boutry’s Chassacor, Bozza’s En Fôret, Büsser’s La Chasse de St. Hubert, Pessard’s In the Forest, Piantoni’s Air de Chasse, Schmid’s Im Tiefsten Walde, and Vinter’s Hunter’s Moon. By contrast, three of the selections, Gliére’s Nocturne, Strauss’ Nocturno, and Van Ecchaute’s Nachtpoëma are nocturnes that showcase the expressive quality of the horn. In addition, Bush’s Autumn Poem, Bacon’s Song After the Rain, and Webber’s Summer Pastures are included for their lyric qualities and evocations of nature. The largest work of the project is John Williams’s Concerto for Horn. Its five movements feature both hunting horn traits and expressive qualities. Alejandro Hernandez-Valdez and Grace Cho were the two pianists engaged for the recording. The recording engineer was Edward Kelly. The producer was Carlos Rodriquez. The pieces were recorded at the Spencerville Seventh-day Adventist Church sanctuary in Spencerville, Maryland between November 2010 and February 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As robot imitation learning is beginning to replace conventional hand-coded approaches in programming robot behaviors, much work is focusing on learning from the actions of demonstrators. We hypothesize that in many situations, procedural tasks can be learned more effectively by observing object behaviors while completely ignoring the demonstrator's motions. To support studying this hypothesis and robot imitation learning in general, we built a software system named SMILE that is a simulated 3D environment. In this virtual environment, both a simulated robot and a user-controlled demonstrator can manipulate various objects on a tabletop. The demonstrator is not embodied in SMILE, and therefore a recorded demonstration appears as if the objects move on their own. In addition to recording demonstrations, SMILE also allows programing the simulated robot via Matlab scripts, as well as creating highly customizable objects for task scenarios via XML. This report describes the features and usages of SMILE.