3 resultados para Reasoning in science
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Problem This dissertation presents a literature-based framework for communication in science (with the elements partners, purposes, message, and channel), which it then applies in and amends through an empirical study of how geoscientists use two social computing technologies (SCTs), blogging and Twitter (both general use and tweeting from conferences). How are these technologies used and what value do scientists derive from them? Method The empirical part used a two-pronged qualitative study, using (1) purposive samples of ~400 blog posts and ~1000 tweets and (2) a purposive sample of 8 geoscientist interviews. Blog posts, tweets, and interviews were coded using the framework, adding new codes as needed. The results were aggregated into 8 geoscientist case studies, and general patterns were derived through cross-case analysis. Results A detailed picture of how geoscientists use blogs and twitter emerged, including a number of new functions not served by traditional channels. Some highlights: Geoscientists use SCTs for communication among themselves as well as with the public. Blogs serve persuasion and personal knowledge management; Twitter often amplifies the signal of traditional communications such as journal articles. Blogs include tutorials for peers, reviews of basic science concepts, and book reviews. Twitter includes links to readings, requests for assistance, and discussions of politics and religion. Twitter at conferences provides live coverage of sessions. Conclusions Both blogs and Twitter are routine parts of scientists' communication toolbox, blogs for in-depth, well-prepared essays, Twitter for faster and broader interactions. Both have important roles in supporting community building, mentoring, and learning and teaching. The Framework of Communication in Science was a useful tool in studying these two SCTs in this domain. The results should encourage science administrators to facilitate SCT use of scientists in their organization and information providers to search SCT documents as an important source of information.
Resumo:
Race as a biological category has a long and troubling history as a central ordering concept in the life and human sciences. The mid-twentieth century has been marked as the point where biological concepts of race began to disappear from science. However, biological definitions of race continue to penetrate scientific understandings and uses of racial concepts. Using the theoretical frameworks of critical race theory and science and technology studies and an in-depth case study of the discipline of immunology, this dissertation explores the appearance of a mid-century decline of concepts of biological race in science. I argue that biological concepts of race did not disappear in the middle of the twentieth century but were reconfigured into genetic language. In this dissertation I offer a periodization of biological concepts of race. Focusing on continuities and the effects of contingent events, I compare how biological concepts of race articulate with racisms in each period. The discipline of immunology serves as a case study that demonstrates how biological concepts of race did not decline in the postwar era, but were translated into the language of genetics and populations. I argue that the appearance of a decline was due to events both internal and external to the science of immunology. By framing the mid-twentieth century disappearance of race in science as the triumph of an antiracist racial project of science, it allows us to more clearly see the more recent resurgence of race in science as a recycling of older themes and tactics from the racist science projects of the past.
Resumo:
According to a traditional rationalist proposal, it is possible to attain knowledge of certain necessary truths by means of insight—an epistemic mental act that combines the 'presentational' character of perception with the a priori status usually reserved for discursive reasoning. In this dissertation, I defend the insight proposal in relation to a specific subject matter: elementary Euclidean plane geometry, as set out in Book I of Euclid's Elements. In particular, I argue that visualizations and visual experiences of diagrams allow human subjects to grasp truths of geometry by means of visual insight. In the first two chapters, I provide an initial defense of the geometrical insight proposal, drawing on a novel interpretation of Plato's Meno to motivate the view and to reply to some objections. In the remaining three chapters, I provide an account of the psychological underpinnings of geometrical insight, a task that requires considering the psychology of visual imagery alongside the details of Euclid's geometrical system. One important challenge is to explain how basic features of human visual representations can serve to ground our intuitive grasp of Euclid's postulates and other initial assumptions. A second challenge is to explain how we are able to grasp general theorems by considering diagrams that depict only special cases. I argue that both of these challenges can be met by an account that regards geometrical insight as based in visual experiences involving the combined deployment of two varieties of 'dynamic' visual imagery: one that allows the subject to visually rehearse spatial transformations of a figure's parts, and another that allows the subject to entertain alternative ways of structurally integrating the figure as a whole. It is the interplay between these two forms of dynamic imagery that enables a visual experience of a diagram, suitably animated in visual imagination, to justify belief in the propositions of Euclid’s geometry. The upshot is a novel dynamic imagery account that explains how intuitive knowledge of elementary Euclidean plane geometry can be understood as grounded in visual insight.