4 resultados para RULES AND REGULATIONS
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The relevance of explicit instruction has been well documented in SLA research. Despite numerous positive findings, however, the issue continues to engage scholars worldwide. One issue that was largely neglected in previous empirical studies - and one that may be crucial for the effectiveness of explicit instruction - is the timing and integration of rules and practice. The present study investigated the extent to which grammar explanation (GE) before practice, grammar explanation during practice, and individual differences impact the acquisition of L2 declarative and procedural knowledge of two grammatical structures in Spanish. In this experiment, 128 English-speaking learners of Spanish were randomly assigned to four experimental treatments and completed comprehension-based task-essential practice for interpreting object-verb (OV) and ser/estar (SER) sentences in Spanish. Results confirmed the predicted importance of timing of GE: participants who received GE during practice were more likely to develop and retain their knowledge successfully. Results further revealed that the various combinations of rules and practice posed differential task demands on the learners and consequently drew on language aptitude and WM to a different extent. Since these correlations between individual differences and learning outcomes were the least observed in the conditions that received GE during practice, we argue that the suitable integration of rules and practice ameliorated task demands, reducing the burden on the learner, and accordingly mitigated the role of participants’ individual differences. Finally, some evidence also showed that the comprehension practice that participants received for the two structures was not sufficient for the formation of solid productive knowledge, but was more effective for the OV than for the SER construction.
Resumo:
We propose three research problems to explore the relations between trust and security in the setting of distributed computation. In the first problem, we study trust-based adversary detection in distributed consensus computation. The adversaries we consider behave arbitrarily disobeying the consensus protocol. We propose a trust-based consensus algorithm with local and global trust evaluations. The algorithm can be abstracted using a two-layer structure with the top layer running a trust-based consensus algorithm and the bottom layer as a subroutine executing a global trust update scheme. We utilize a set of pre-trusted nodes, headers, to propagate local trust opinions throughout the network. This two-layer framework is flexible in that it can be easily extensible to contain more complicated decision rules, and global trust schemes. The first problem assumes that normal nodes are homogeneous, i.e. it is guaranteed that a normal node always behaves as it is programmed. In the second and third problems however, we assume that nodes are heterogeneous, i.e, given a task, the probability that a node generates a correct answer varies from node to node. The adversaries considered in these two problems are workers from the open crowd who are either investing little efforts in the tasks assigned to them or intentionally give wrong answers to questions. In the second part of the thesis, we consider a typical crowdsourcing task that aggregates input from multiple workers as a problem in information fusion. To cope with the issue of noisy and sometimes malicious input from workers, trust is used to model workers' expertise. In a multi-domain knowledge learning task, however, using scalar-valued trust to model a worker's performance is not sufficient to reflect the worker's trustworthiness in each of the domains. To address this issue, we propose a probabilistic model to jointly infer multi-dimensional trust of workers, multi-domain properties of questions, and true labels of questions. Our model is very flexible and extensible to incorporate metadata associated with questions. To show that, we further propose two extended models, one of which handles input tasks with real-valued features and the other handles tasks with text features by incorporating topic models. Our models can effectively recover trust vectors of workers, which can be very useful in task assignment adaptive to workers' trust in the future. These results can be applied for fusion of information from multiple data sources like sensors, human input, machine learning results, or a hybrid of them. In the second subproblem, we address crowdsourcing with adversaries under logical constraints. We observe that questions are often not independent in real life applications. Instead, there are logical relations between them. Similarly, workers that provide answers are not independent of each other either. Answers given by workers with similar attributes tend to be correlated. Therefore, we propose a novel unified graphical model consisting of two layers. The top layer encodes domain knowledge which allows users to express logical relations using first-order logic rules and the bottom layer encodes a traditional crowdsourcing graphical model. Our model can be seen as a generalized probabilistic soft logic framework that encodes both logical relations and probabilistic dependencies. To solve the collective inference problem efficiently, we have devised a scalable joint inference algorithm based on the alternating direction method of multipliers. The third part of the thesis considers the problem of optimal assignment under budget constraints when workers are unreliable and sometimes malicious. In a real crowdsourcing market, each answer obtained from a worker incurs cost. The cost is associated with both the level of trustworthiness of workers and the difficulty of tasks. Typically, access to expert-level (more trustworthy) workers is more expensive than to average crowd and completion of a challenging task is more costly than a click-away question. In this problem, we address the problem of optimal assignment of heterogeneous tasks to workers of varying trust levels with budget constraints. Specifically, we design a trust-aware task allocation algorithm that takes as inputs the estimated trust of workers and pre-set budget, and outputs the optimal assignment of tasks to workers. We derive the bound of total error probability that relates to budget, trustworthiness of crowds, and costs of obtaining labels from crowds naturally. Higher budget, more trustworthy crowds, and less costly jobs result in a lower theoretical bound. Our allocation scheme does not depend on the specific design of the trust evaluation component. Therefore, it can be combined with generic trust evaluation algorithms.
Resumo:
This dissertation explores three aspects of the economics and policy issues surrounding retail payments (low-value frequent payments): the microeconomic aspect, by measuring costs associated with retail payment instruments; the macroeconomic aspect, by quantifying the impact of the use of electronic rather than paper-based payment instruments on consumption and GDP; and the policy aspect, by identifying barriers that keep countries stuck with outdated payment systems, and recommending policy interventions to move forward with payments modernization. Payment system modernization has become a prominent part of the financial sector reform agenda in many advanced and developing countries. Greater use of electronic payments rather than cash and other paper-based instruments would have important economic and social benefits, including lower costs and thereby increased economic efficiency and higher incomes, while broadening access to the financial system, notably for people with moderate and low incomes. The dissertation starts with a general introduction on retail payments. Chapter 1 develops a theoretical model for measuring payments costs, and applies the model to Guyana—an emerging market in the midst of the transition from paper to electronic payments. Using primary survey data from Guyanese consumers, the results of the analysis indicate that annual costs related to the use of cash by consumers reach 2.5 percent of the country’s GDP. Switching to electronic payment instruments would provide savings amounting to 1 percent of GDP per year. Chapter 2 broadens the analysis to calculate the macroeconomic impacts of a move to electronic payments. Using a unique panel dataset of 76 countries across the 17-year span from 1998 to 2014 and a pooled OLS country fixed effects model, Chapter 2 finds that on average, use of debit and credit cards contribute USD 16.2 billion to annual global consumption, and USD 160 billion to overall annual global GDP. Chapter 3 provides an in-depth assessment of the Albanian payment cards and remittances market and recommends a set of incentives and regulations (both carrots and sticks) that would allow the country to modernize its payment system. Finally, the conclusion summarizes the lessons of the dissertation’s research and brings forward issues to be explored by future research in the retail payments area.
Resumo:
This dissertation describes two studies on macroeconomic trends and cycles. The first chapter studies the impact of Information Technology (IT) on the U.S. labor market. Over the past 30 years, employment and income shares of routine-intensive occupations have declined significantly relative to nonroutine occupations, and the overall U.S. labor income share has declined relative to capital. Furthermore, the decline of routine employment has been largely concentrated during recessions and ensuing recoveries. I build a model of unbalanced growth to assess the role of computerization and IT in driving these labor market trends and cycles. I augment a neoclassical growth model with exogenous IT progress as a form of Routine-Biased Technological Change (RBTC). I show analytically that RBTC causes the overall labor income share to follow a U-shaped time path, as the monotonic decline of routine labor share is increasingly offset by the monotonic rise of nonroutine labor share and the elasticity of substitution between the overall labor and capital declines under IT progress. Quantitatively, the model explains nearly all the divergence between routine and nonroutine labor in the period 1986-2014, as well as the mild decline of the overall labor share between 1986 and the early 2000s. However, the model with IT progress alone cannot explain the accelerated decline of labor income share after the early 2000s, suggesting that other factors, such as globalization, may have played a larger role in this period. Lastly, when nonconvex labor adjustment costs are present, the model generates a stepwise decline in routine labor hours, qualitatively consistent with the data. The timing of these trend adjustments can be significantly affected by aggregate productivity shocks and concentrated in recessions. The second chapter studies the implications of loss aversion on the business cycle dynamics of aggregate consumption and labor hours. Loss aversion refers to the fact that people are distinctively more sensitive to losses than to gains. Loss averse agents are very risk averse around the reference point and exhibit asymmetric responses to positive and negative income shocks. In an otherwise standard Real Business Cycle (RBC) model, I study loss aversion in both consumption alone and consumption-and-leisure together. My results indicate that how loss aversion affects business cycle dynamics depends critically on the nature of the reference point. If, for example, the reference point is status quo, loss aversion dramatically lowers the effective inter-temporal rate of substitution and induces excessive consumption smoothing. In contrast, if the reference point is fixed at a constant level, loss aversion generates a flat region in the decision rules and asymmetric impulse responses to technology shocks. Under a reasonable parametrization, loss aversion has the potential to generate asymmetric business cycles with deeper and more prolonged recessions.