2 resultados para Quality-of-Service (QoS)

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aging African-American women are disproportionately affected by negative health outcomes and mortality. Life stress has strong associations with these health outcomes. The purpose of this research was to understand how aging African American women manage stress. Specifically, the effects of coping, optimism, resilience, and religiousness as it relates to quality of life were examined. This cross-sectional exploratory study used a self-administered questionnaire and examined quality of life in 182 African-American women who were 65 years of age or older living in senior residential centers in Baltimore using convenience sampling. The age range for these women was 65 to 94 years with a mean of 71.8 years (SD = 5.6). The majority (53.1%) of participants completed high school, with 23 percent (N = 42) obtaining college degrees and 19 percent (N = 35) holding advanced degrees. Nearly 58 percent of participants were widowed and 81 percent were retired. In addition to demographics, the questionnaire included the following reliable and valid survey instruments: The Brief Cope Scale (Carver, Scheier, & Weintraub, 1989), Optimism Questionnaire (Scheier, Carver, & Bridges, 1994), Resilience Survey (Wagnild & Young, 1987), Religiousness Assessment (Koenig, 1997), and Quality of Life Questionnaire (Cummins, 1996). Results revealed that the positive psychological factors examined were positively associated with and significant predictors of quality of life. The bivariate correlations indicated that of the six coping dimensions measured in this study, planning (r=.68) was the most positively associated with quality of life. Optimism (r=.33), resilience (=.48), and religiousness (r=.30) were also significantly correlated with quality of life. In the linear regression model, again the coping dimension of planning was the best predictor of quality of life (beta = .75, p <.001). Optimism (beta = .31, p <.001), resilience (beta = .34, p, .001) and religiousness (beta = .17, p <.01) were also significant predictors of quality of life. It appears as if positive psychology plays an important role in improving quality of life among aging African-American women.