2 resultados para Purchasing.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation studies technological change in the context of energy and environmental economics. Technology plays a key role in reducing greenhouse gas emissions from the transportation sector. Chapter 1 estimates a structural model of the car industry that allows for endogenous product characteristics to investigate how gasoline taxes, R&D subsidies and competition affect fuel efficiency and vehicle prices in the medium-run, both through car-makers' decisions to adopt technologies and through their investments in knowledge capital. I use technology adoption and automotive patents data for 1986-2006 to estimate this model. I show that 92% of fuel efficiency improvements between 1986 and 2006 were driven by technology adoption, while the role of knowledge capital is largely to reduce the marginal production costs of fuel-efficient cars. A counterfactual predicts that an additional $1/gallon gasoline tax in 2006 would have increased the technology adoption rate, and raised average fuel efficiency by 0.47 miles/gallon, twice the annual fuel efficiency improvement in 2003-2006. An R&D subsidy that would reduce the marginal cost of knowledge capital by 25% in 2006 would have raised investment in knowledge capital. This subsidy would have raised fuel efficiency only by 0.06 miles/gallon in 2006, but would have increased variable profits by $2.3 billion over all firms that year. Passenger vehicle fuel economy standards in the United States will require substantial improvements in new vehicle fuel economy over the next decade. Economic theory suggests that vehicle manufacturers adopt greater fuel-saving technologies for vehicles with larger market size. Chapter 2 documents a strong connection between market size, measured by sales, and technology adoption. Using variation consumer demographics and purchasing pattern to account for the endogeneity of market size, we find that a 10 percent increase in market size raises vehicle fuel efficiency by 0.3 percent, as compared to a mean improvement of 1.4 percent per year over 1997-2013. Historically, fuel price and demographic-driven market size changes have had large effects on technology adoption. Furthermore, fuel taxes would induce firms to adopt fuel-saving technologies on their most efficient cars, thereby polarizing the fuel efficiency distribution of the new vehicle fleet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation analyzes how individuals respond to the introduction of taxation aimed to reduce vehicle pollution, greenhouse gases and traffic. The first chapter analyzes a vehicle registration tax based on emissions of carbon dioxide (CO2), a major greenhouse gas, adopted in the UK in 2001 and subject to major changes in the following years. I identify the impact of the policy on new vehicle registrations and carbon emissions, compared to alternative measures. Results show that consumers respond to the tax by purchasing cleaner cars, but a carbon tax generating the same revenue would further reduce carbon emissions. The second chapter looks at a pollution charge (polluting vehicles pay to enter the city) and a congestion charge (all vehicles pay) adopted in 2008 and 2011 in Milan, Italy, and how they affected the concentration of nitrogen dioxides (NOx). I use data from pollution monitoring stations to measure the change between areas adopting the tax and other areas. Results show that in the first quarter of their introduction, both policies decreased NOx concentration in a range of -8% and -5%, but the effect declines over time, especially in the case of the pollution charge. The third chapter examines a trial conducted in 2005 in the Seattle, WA, area, in which vehicle trips by 276 volunteer households were recorded with a GPS device installed in their vehicles. Households received a monetary endowment which they used to pay a toll for each mile traveled: the toll varied with the time of the day, the day of the week and the type of road used. Using information on driving behavior, I show that in the first week a $0.10 toll per mile reduces the number of miles driven by around 7%, but the effect lasts only few weeks at most. The effect is mainly driven by a reduction in highway miles during trips from work to home, and it is strongly influenced by past driving behavior, income, the size of the initial endowment and the number of children in the household.