2 resultados para Programmable calculators.
em DRUM (Digital Repository at the University of Maryland)
Resumo:
I believe that the purpose of expanding the oboe’s repertoire is to not only create original compositions, but to also utilize technical advancements in order to achieve access to a wider range of repertoire through the art of transcription. This paper examines the various paths to achieving such expansion, including utilizing unique performer skills, use of auxiliary instruments, advancements in the instrument itself and musical developments that challenge the perception of the oboe’s solo role in a particular era of music history. The oboe need not be relegated to the confines of a compositionally limited stereotype. The goal of my “extended-range” dissertation project is to expand the “range” of programmable repertoire, with a focus on music in both the 19th and 21st-centuries, while simultaneously expanding the technical capabilities and expectations of the modern oboe—in part by exploiting the new possibilities of the recently invented low-A extension key.
Resumo:
The surge of interest in graphene, as epitomized by the Nobel Prize in Physics in 2010, is attributed to its extraordinary properties. Graphene is ultrathin, mechanically tough, and has amendable surface chemistry. These features make graphene and graphene based nanostructure an ideal candidate for the use of molecular mass manipulation. The controllable and programmable molecular mass manipulation is crucial in enabling future graphene based applications, however is challenging to achieve. This dissertation studies several aspects in molecular mass manipulation including mass transportation, patterning and storage. For molecular mass transportation, two methods based on carbon nanoscroll are demonstrated to be effective. They are torsional buckling instability assisted transportation and surface energy induced radial shrinkage. To achieve a more controllable transportation, a fundamental law of direction transport of molecular mass by straining basal graphene is studied. For molecular mass patterning, we reveal a barrier effect of line defects in graphene, which can enable molecular confining and patterning in a domain of desirable geometry. Such a strategy makes controllable patterning feasible for various types of molecules. For molecular mass storage, we propose a novel partially hydrogenated bilayer graphene structure which has large capacity for mass uptake. Also the mass release can be achieved by simply stretching the structure. Therefore the mass uptake and release is reversible. This kind of structure is crucial in enabling hydrogen fuel based technology. Lastly, spontaneous nanofluidic channel formation enabled by patterned hydrogenation is studied. This novel strategy enables programmable channel formation with pre-defined complex geometry.