2 resultados para Process-based model
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The size of online image datasets is constantly increasing. Considering an image dataset with millions of images, image retrieval becomes a seemingly intractable problem for exhaustive similarity search algorithms. Hashing methods, which encodes high-dimensional descriptors into compact binary strings, have become very popular because of their high efficiency in search and storage capacity. In the first part, we propose a multimodal retrieval method based on latent feature models. The procedure consists of a nonparametric Bayesian framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. In the second part, we focus on supervised hashing with kernels. We describe a flexible hashing procedure that treats binary codes and pairwise semantic similarity as latent and observed variables, respectively, in a probabilistic model based on Gaussian processes for binary classification. We present a scalable inference algorithm with the sparse pseudo-input Gaussian process (SPGP) model and distributed computing. In the last part, we define an incremental hashing strategy for dynamic databases where new images are added to the databases frequently. The method is based on a two-stage classification framework using binary and multi-class SVMs. The proposed method also enforces balance in binary codes by an imbalance penalty to obtain higher quality binary codes. We learn hash functions by an efficient algorithm where the NP-hard problem of finding optimal binary codes is solved via cyclic coordinate descent and SVMs are trained in a parallelized incremental manner. For modifications like adding images from an unseen class, we propose an incremental procedure for effective and efficient updates to the previous hash functions. Experiments on three large-scale image datasets demonstrate that the incremental strategy is capable of efficiently updating hash functions to the same retrieval performance as hashing from scratch.
Resumo:
Racism continues to thrive on the Internet. Yet, little is known about racism in online settings and the potential consequences. The purpose of this study was to develop the Perceived Online Racism Scale (PORS), the first measure to assess people’s perceived online racism experiences as they interact with others and consume information on the Internet. Items were developed through a multi-stage process based on literature review, focus-groups, and qualitative data collection. Based on a racially diverse large-scale sample (N = 1023), exploratory and confirmatory factor analyses provided support for a 30-item bifactor model with the following three factors: (a) 14-item PORS-IP (personal experiences of racism in online interactions), (b) 5-item PORS-V (observations of other racial/ethnic minorities being offended), and (c) 11-item PORS-I (consumption of online contents and information denigrating racial/ethnic minorities and highlighting racial injustice in society). Initial construct validity examinations suggest that PORS is significantly linked to psychological distress.