5 resultados para Probabilistic metrics

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This was presented during the 2nd annual Library Research and Innovation Practices at the University of Maryland Libraries, McKeldin Library, on June 8, 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This presentation was one of four during a Mid-Atlantic Regional Archives Conference presentation on April 15, 2016. Digitization of collections can help to improve internal workflows, make materials more accessible, and create new and engaging relationships with users. Laurie Gemmill Arp will discuss the LYRASIS Digitization Collaborative, created to assist institutions with their digitization needs, and how it has worked to help institutions increase connections with users. Robin Pike from the University of Maryland will discuss how they factor requests for access into selection for digitization and how they track the use of digitized materials. Laura Drake Davis of James Madison University will discuss the establishment of a formal digitization program, its impact on users, and the resulting increased use of their collections. Linda Tompkins-Baldwin will discuss Digital Maryland’s partnership with the Digital Public Library of America to provide access to archives held by institutions without a digitization program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous ecological functions, some of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field-validated, landscape-scale approaches for classifying wetlands based on their expected degree of connectivity with stream networks. During the 2015 water year, flow duration was recorded in non-perennial streams (n = 23) connecting forested wetlands and nearby perennial streams on the Delmarva Peninsula (Maryland, USA). Field and GIS-derived landscape metrics (indicators of catchment, wetland, non-perennial stream, and soil characteristics) were assessed as predictors of wetland-stream connectivity (duration, seasonal onset and offset dates). Connection duration was most strongly correlated with non-perennial stream geomorphology and wetland characteristics. A final GIS-based stepwise regression model (adj-R2 = 0.74, p < 0.0001) described wetland-stream connection duration as a function of catchment area, wetland area and number, and soil available water storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.