4 resultados para Probabilistic fire risk analysis
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.
Resumo:
In quantitative risk analysis, the problem of estimating small threshold exceedance probabilities and extreme quantiles arise ubiquitously in bio-surveillance, economics, natural disaster insurance actuary, quality control schemes, etc. A useful way to make an assessment of extreme events is to estimate the probabilities of exceeding large threshold values and extreme quantiles judged by interested authorities. Such information regarding extremes serves as essential guidance to interested authorities in decision making processes. However, in such a context, data are usually skewed in nature, and the rarity of exceedance of large threshold implies large fluctuations in the distribution's upper tail, precisely where the accuracy is desired mostly. Extreme Value Theory (EVT) is a branch of statistics that characterizes the behavior of upper or lower tails of probability distributions. However, existing methods in EVT for the estimation of small threshold exceedance probabilities and extreme quantiles often lead to poor predictive performance in cases where the underlying sample is not large enough or does not contain values in the distribution's tail. In this dissertation, we shall be concerned with an out of sample semiparametric (SP) method for the estimation of small threshold probabilities and extreme quantiles. The proposed SP method for interval estimation calls for the fusion or integration of a given data sample with external computer generated independent samples. Since more data are used, real as well as artificial, under certain conditions the method produces relatively short yet reliable confidence intervals for small exceedance probabilities and extreme quantiles.
Resumo:
The sediments of Bear Creek near Baltimore, Maryland demonstrate substantial toxicity to benthic organisms, and contain a complex mixture of organic and inorganic contaminants. The present study maps the spatial extent and depth profile of toxicity and contamination in Bear Creek, and explores correlations between heavy metals, organic contaminants, and toxic responses. Two novel analytical techniques – handheld XRF and an antibody-based PAH biosensor – were applied to samples from the site to quantify total metals and total PAHs in sediments. By comprehensively assessing toxicity in Bear Creek, the present study provides data to inform future risk assessments and management decisions relating for the site, while demonstrating the benefits of applying joint biological assays and chemical assessment methods to sediments with complex contaminant mixtures.
Resumo:
The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.