4 resultados para Pressure Drop

em DRUM (Digital Repository at the University of Maryland)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two-phase flow heat exchangers have been shown to have very high efficiencies, but the lack of a dependable model and data precludes them from use in many cases. Herein a new method for the measurement of local convective heat transfer coefficients from the outside of a heat transferring wall has been developed, which results in accurate local measurements of heat flux during two-phase flow. This novel technique uses a chevron-pattern corrugated plate heat exchanger consisting of a specially machined Calcium Fluoride plate and the refrigerant HFE7100, with heat flux values up to 1 W cm-2 and flow rates up to 300 kg m-2s-1. As Calcium Fluoride is largely transparent to infra-red radiation, the measurement of the surface temperature of PHE that is in direct contact with the liquid is accomplished through use of a mid-range (3.0-5.1 µm) infra-red camera. The objective of this study is to develop, validate, and use a unique infrared thermometry method to quantify the heat transfer characteristics of flow boiling within different Plate Heat Exchanger geometries. This new method allows high spatial and temporal resolution measurements. Furthermore quasi-local pressure measurements enable us to characterize the performance of each geometry. Validation of this technique will be demonstrated by comparison to accepted single and two-phase data. The results can be used to come up with new heat transfer correlations and optimization tools for heat exchanger designers. The scientific contribution of this thesis is, to give PHE developers further tools to allow them to identify the heat transfer and pressure drop performance of any corrugated plate pattern directly without the need to account for typical error sources due to inlet and outlet distribution systems. Furthermore, the designers will now gain information on the local heat transfer distribution within one plate heat exchanger cell which will help to choose the correct corrugation geometry for a given task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, I experimentally analyzed the performance of a commercial semi-welded plate type heat exchanger (PHE) for use with ammonia systems. I determined performance parameters such as overall heat transfer coefficient, capacity, and pressure drop of the semi-welded PHE. This was analyzed by varying different parameters which demonstrated changes in overall heat transfer coefficient, capacity, and pressure drop. Both water and ammonia flow rates to the semi-welded PHE were varied independently, and analyzed in order to understand how changes in flow rates affected performance. Inlet water temperature was also varied, in order to understand how raising condenser water inlet temperature would affect performance. Finally, pressure drop was monitored to better understand the performance limitations of the semi-welded PHE. Testing of the semi-welded will give insight as to the performance of the semi-welded PHE in a potential ocean thermal energy conversion system, and whether the semi-welded PHE is a viable choice for use as an ammonia condenser.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulated Transformer Rectifier Units contain several power electronic boards to facilitate AC to DC power conversion. As these units become smaller, the number of devices on each board increases while their distance from each other decreases, making active cooling essential to maintaining reliable operation. Although it is widely accepted that liquid is a far superior heat transfer medium to air, the latter is still capable of yielding low device operating temperatures with proper heat sink and airflow design. The purpose of this study is to describe the models and methods used to design and build the thermal management system for one of the power electronic boards in a compact, high power regulated transformer rectifier unit. Maximum device temperature, available pressure drop and manufacturability were assessed when selecting the final design for testing. Once constructed, the thermal management system’s performance was experimentally verified at three different power levels.