3 resultados para Predictive model

em DRUM (Digital Repository at the University of Maryland)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study examined a modified social cognitive model of domain satisfaction (Lent, 2004). In addition to social cognitive variables and trait positive affect, the model included two aspects of adult attachment, attachment anxiety and avoidance. The study extended recent research on well-being and satisfaction in academic, work, and social domains. The adjusted model was tested in a sample of 454 college students, in order to determine the role of adult attachment variables in explaining social satisfaction, above and beyond the direct and indirect effects of trait positive affect. Confirmatory factor analysis found support for 8 correlated factors in the modified model: social domain satisfaction, positive affect, attachment avoidance, attachment anxiety, social support, social self-efficacy, social outcome expectations, and social goal progress. Three alternative structural models were tested to account for the ways in which attachment anxiety and attachment avoidance might relate to social satisfaction. Results of model testing provided support for a model in which attachment avoidance produced only an indirect path to social satisfaction via self-efficacy and social support. Positive affect, avoidance, social support, social self-efficacy, and goal progress each produced significant direct or indirect paths to social domain satisfaction, though attachment anxiety and social outcome expectations did not contribute to the predictive model. Implications of the findings regarding the modified social cognitive model of social domain satisfaction were discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiscale reinforcement, using carbon microfibers and multi-walled carbon nanotubes, of polymer matrix composites manufactured by twin-screw extrusion is investigated for enhanced mechanical and thermal properties with an emphasis on the use of a diverging flow in the die for fluid mechanical fiber manipulation. Using fillers at different length scales (microscale and nanoscale), synergistic combinations have been identified to produce distinct mechanical and thermal behavior. Fiber manipulation has been demonstrated experimentally and computationally, and has been shown to enhance thermal conductivity significantly. Finally, a new physics driven predictive model for thermal conductivity has been developed based on fiber orientation during flow, which is shown to successfully capture composite thermal conductivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leafy greens are essential part of a healthy diet. Because of their health benefits, production and consumption of leafy greens has increased considerably in the U.S. in the last few decades. However, leafy greens are also associated with a large number of foodborne disease outbreaks in the last few years. The overall goal of this dissertation was to use the current knowledge of predictive models and available data to understand the growth, survival, and death of enteric pathogens in leafy greens at pre- and post-harvest levels. Temperature plays a major role in the growth and death of bacteria in foods. A growth-death model was developed for Salmonella and Listeria monocytogenes in leafy greens for varying temperature conditions typically encountered during supply chain. The developed growth-death models were validated using experimental dynamic time-temperature profiles available in the literature. Furthermore, these growth-death models for Salmonella and Listeria monocytogenes and a similar model for E. coli O157:H7 were used to predict the growth of these pathogens in leafy greens during transportation without temperature control. Refrigeration of leafy greens meets the purposes of increasing their shelf-life and mitigating the bacterial growth, but at the same time, storage of foods at lower temperature increases the storage cost. Nonlinear programming was used to optimize the storage temperature of leafy greens during supply chain while minimizing the storage cost and maintaining the desired levels of sensory quality and microbial safety. Most of the outbreaks associated with consumption of leafy greens contaminated with E. coli O157:H7 have occurred during July-November in the U.S. A dynamic system model consisting of subsystems and inputs (soil, irrigation, cattle, wildlife, and rainfall) simulating a farm in a major leafy greens producing area in California was developed. The model was simulated incorporating the events of planting, irrigation, harvesting, ground preparation for the new crop, contamination of soil and plants, and survival of E. coli O157:H7. The predictions of this system model are in agreement with the seasonality of outbreaks. This dissertation utilized the growth, survival, and death models of enteric pathogens in leafy greens during production and supply chain.