3 resultados para Power Distribution Poles
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.
Resumo:
Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.
Resumo:
As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.