3 resultados para Positive Information
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Mental illness affects a sizable minority of Americans at any given time, yet many people with mental illness (hereafter PWMI) remain unemployed or underemployed relative to the general population. Research has suggested that part of the reason for this is discrimination toward PWMI. This research investigated mechanisms that affect employment discrimination against PWMI. Drawing from theories on stigma and power, three studies assessed 1) the stereotyping of workers with mental illness as unfit for workplace success, 2) the impact of positive information on countering these negative stereotypes, and whether negatively-stereotyped conditions elicited discrimination; and 3) the effects of power on mental illness stigma components. I made a series of predictions related to theories on the Stereotype Content Model, illness attribution, the contact hypothesis, gender and mental health, and power. Studies tested predictions using, 1) an online vignette survey measuring attitudes, 2) an online survey measuring responses to fictitious applications for a middle management position, and 3) a laboratory experiment in which some participants were primed to feel powerful and some were not. Results of Study 1 demonstrated that PWMI were routinely stigmatized as incompetent, dangerous, and lacking valued employment attributes, relative to a control condition. This was especially evident for workers presented as having PTSD from wartime service and workers with schizophrenia, and when the worker was a woman. Study 2 showed that, although both war-related PTSD and schizophrenia evoke negative stereotypes, only schizophrenia evoked hiring discrimination. Finally, Study 3 found no effect of being primed to feel powerful on stigmatizing attitudes toward a person with symptoms of schizophrenia. Taken together, findings suggest that employment discrimination towards PWMI is driven by negative stereotypes; but, stereotypes might not lead to actual hiring discrimination for some labeled individuals.
Resumo:
Turnip crinkle virus (TCV) and Pea enation mosaic virus (PEMV) are two positive (+)-strand RNA viruses that are used to investigate the regulation of translation and replication due to their small size and simple genomes. Both viruses contain cap-independent translation elements (CITEs) within their 3´ untranslated regions (UTRs) that fold into tRNA-shaped structures (TSS) according to nuclear magnetic resonance and small angle x-ray scattering analysis (TCV) and computational prediction (PEMV). Specifically, the TCV TSS can directly associate with ribosomes and participates in RNA-dependent RNA polymerase (RdRp) binding. The PEMV kissing-loop TSS (kl-TSS) can simultaneously bind to ribosomes and associate with the 5´ UTR of the viral genome. Mutational analysis and chemical structure probing methods provide great insight into the function and secondary structure of the two 3´ CITEs. However, lack of 3-D structural information has limited our understanding of their functional dynamics. Here, I report the folding dynamics for the TCV TSS using optical tweezers (OT), a single molecule technique. My study of the unfolding/folding pathways for the TCV TSS has provided an unexpected unfolding pathway, confirmed the presence of Ψ3 and hairpin elements, and suggested an interconnection between the hairpins and pseudoknots. In addition, this study has demonstrated the importance of the adjacent upstream adenylate-rich sequence for the formation of H4a/Ψ3 along with the contribution of magnesium to the stability of the TCV TSS. In my second project, I report on the structural analysis of the PEMV kl-TSS using NMR and SAXS. This study has re-confirmed the base-pair pattern for the PEMV kl-TSS and the proposed interaction of the PEMV kl-TSS with its interacting partner, hairpin 5H2. The molecular envelope of the kl-TSS built from SAXS analysis suggests the kl-TSS has two functional conformations, one of which has a different shape from the previously predicted tRNA-shaped form. Along with applying biophysical methods to study the structural folding dynamics of RNAs, I have also developed a technique that improves the production of large quantities of recombinant RNAs in vivo for NMR study. In this project, I report using the wild-type and mutant E.coli strains to produce cost-effective, site-specific labeled, recombinant RNAs. This technique was validated with four representative RNAs of different sizes and complexity to produce milligram amounts of RNAs. The benefit of using site-specific labeled RNAs made from E.coli was demonstrated with several NMR techniques.
Resumo:
I investigate the effects of information frictions in price setting decisions. I show that firms' output prices and wages are less sensitive to aggregate economic conditions when firms and workers cannot perfectly understand (or know) the aggregate state of the economy. Prices and wages respond with a lag to aggregate innovations because agents learn slowly about those changes, and this delayed adjustment in prices makes output and unemployment more sensitive to aggregate shocks. In the first chapter of this dissertation, I show that workers' noisy information about the state of the economy help us to explain why real wages are sluggish. In the context of a search and matching model, wages do not immediately respond to a positive aggregate shock because workers do not (yet) have enough information to demand higher wages. This increases firms' incentives to post more vacancies, and it makes unemployment volatile and sensitive to aggregate shocks. This mechanism is robust to two major criticisms of existing theories of sluggish wages and volatile unemployment: the flexibility of wages for new hires and the cyclicality of the opportunity cost of employment. Calibrated to U.S. data, the model explains 60% of the overall unemployment volatility. Consistent with empirical evidence, the response of unemployment to TFP shocks predicted by my model is large, hump-shaped, and peaks one year after the TFP shock, while the response of the aggregate wage is weak and delayed, peaking after two years. In the second chapter of this dissertation, I study the role of information frictions and inventories in firms' price setting decisions in the context of a monetary model. In this model, intermediate goods firms accumulate output inventories, observe aggregate variables with one period lag, and observe their nominal input prices and demand at all times. Firms face idiosyncratic shocks and cannot perfectly infer the state of nature. After a contractionary nominal shock, nominal input prices go down, and firms accumulate inventories because they perceive some positive probability that the nominal price decline is due to a good productivity shock. This prevents firms' prices from decreasing and makes current profits, households' income, and aggregate demand go down. According to my model simulations, a 1% decrease in the money growth rate causes output to decline 0.17% in the first quarter and 0.38% in the second followed by a slow recovery to the steady state. Contractionary nominal shocks also have significant effects on total investment, which remains 1% below the steady state for the first 6 quarters.