7 resultados para Plant architecture model

em DRUM (Digital Repository at the University of Maryland)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cost of electricity, a major operating cost of municipal wastewater treatment plants, is related to influent flow rate, power price, and power load. With knowledge of inflow and price patterns, plant operators can manage processes to reduce electricity costs. Records of influent flow, power price, and load are evaluated for Blue Plains Advanced Wastewater Treatment Plant. Diurnal and seasonal trends are analyzed. Power usage is broken down among treatment processes. A simulation model of influent pumping, a large power user, is developed. It predicts pump discharge and power usage based on wet-well level. Individual pump characteristics are tested in the plant. The model accurately simulates plant inflow and power use for two pumping stations [R2 = 0.68, 0.93 (inflow), R2 =0.94, 0.91(power)]. Wet-well stage-storage relationship is estimated from data. Time-varying wet-well level is added to the model. A synthetic example demonstrates application in managing pumps to reduce electricity cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terrestrial and oceanic biomass carbon sinks help reduce anthropogenic CO2 emissions and mitigate the long-term effect of increasing atmospheric CO2. Woody plants have large carbon pools because of their long residence time, however N availability can negatively impact tree responses to elevated CO2. Seasonal cycling of internal N in trees is a component that contributes to fitness especially in N limited environments. It involves resorption from senescing leaves of deciduous trees and storage as vegetative storage proteins (VSP) in perennial organs. Populus is a model organism for tree biology that efficiently recycles N. Bark storage proteins (BSP) are the most abundant VSP that serves as seasonal N reserves. Here I show how poplar growth is influenced by N availability and how growth is influenced by shoot competition for stored N reserves. I also provide data that indicates that auxin mediates BSP catabolism during renewed shoot growth. Understanding the components of N accumulation, remobilization and utilization can provide insights leading to increasing N use efficiency (NUE) of perennial plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research-design thesis explores the implementation of Regenerative Stormwater Conveyance (RSC) as a retrofit of an existing impervious drainage system in a small catchment in the degraded Jones Falls watershed in Baltimore City. An introduction to RSC is provided, placing its development within a theoretical context of novel ecosystems, biomimicry and Nassauer and Opdam’s (2008) model of landscape innovation. The case site is in Baltimore’s Hampden neighborhood on City-owned land adjacent to rowhomes, open space and an access point to a popular wooded trail along a local stream. The design proposal employs RSC to retrofit an ill-performing stormwater system, simultaneously providing a range of ecological, social and economic services; water quantity, water quality and economic performance of the proposed RSC are quantified. While the proposed design is site-specific the model is adaptable for retrofitting other small-scale impervious drainage systems, providing a strategic tool in addressing Baltimore City’s stormwater challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban centers all around the world are striving to re-orient themselves to promoting ideals of human engagement, flexibility, openness and synergy, that thoughtful architecture can provide. From a time when solitude in one’s own backyard was desirable, today’s outlook seeks more, to cater to the needs of diverse individuals and that of collaborators. This thesis is an investigation of the role of architecture in realizing how these ideals might be achieved, using Mixed Use Developments as the platform of space to test these designs ideas on. The author also investigates, identifies, and re-imagines how the idea of live-work excites and attracts users and occupants towards investing themselves in Mixed Used Developments (MUD’s), in urban cities. On the premise that MUDs historically began with an intention of urban revitalization, lying in the core of this spatial model, is the opportunity to investigate what makes mixing of uses an asset, especially in the eyes to today’s generation. Within the framework of reference to the current generation, i.e. the millennial population and alike, who have a lifestyle core that is urban-centric, the excitement for this topic is in the vision of MUD’s that will spatially cater to a variety in lifestyles, demographics, and functions, enabling its users to experience a vibrant 24/7 destination. Where cities are always in flux, the thesis will look to investigate the idea of opportunistic space, in a new MUD, that can also be perceived as an adaptive reuse of itself. The sustainability factor lies in the foresight of the transformative and responsive character of the different uses in the MUD at large, which provides the possibility to cater to a changing demand of building use over time. Delving into the architectural response, the thesis in the process explores, conflicts, tensions, and excitements, and the nature of relationships between different spatial layers of permanence vs. transformative, public vs. private, commercial vs. residential, in such an MUD. At a larger scale, investigations elude into the formal meaning and implications of the proposed type of MUD’s and the larger landscapes in which they are situated, with attempts to blur the fine line between architecture and urbanism. A unique character of MUD’s is the power it has to draw in people at the ground level and lead them into exciting spatial experiences. While the thesis stemmed from a purely objective and theoretical standpoint, the author believes that it is only when context is played into the design thinking process, that true architecture may start to flourish. The unique The significance of this thesis lies on the premise that the author believes that this re-imagined MUD has immense opportunity to amplify human engagement with designed space, and in the belief that it will better enable fostering sustainable communities and in the process, enhance people’s lives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between industry, waste, and urbanism is one fraught with problems across the United States and in particular American cities. The interrelated nature of these systems of flows is in critical need of re-evaluation. This thesis critiques the system of Municipal Solid Waste Management as it currently exists in American cities as a necessary yet undesirable ‘invisible infrastructure’. Industry and waste environments have been pushed to the periphery of urban environments, severing the relationship between the urban environment we inhabit and the one that is required to support the way we live. The flow of garbage from cities of high density to landscapes of waste has created a model of valuing waste as a linear system that separates input from output. This thesis aims to investigate ways that industry, waste, and urban ecologies can work to reinforce one another. The goal of this thesis is to repair the physical and mental separation of waste and public activity through architecture. This thesis will propose ways to tie urban waste infrastructure and public amenities together through the merging of architecture and landscape to create new avenues for public engagement with waste processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forests have a prominent role in carbon storage and sequestration. Anthropogenic forcing has the potential to accelerate climate change and alter the distribution of forests. How forests redistribute spatially and temporally in response to climate change can alter their carbon sequestration potential. The driving question for this research was: How does plant migration from climate change impact vegetation distribution and carbon sequestration potential over continental scales? Large-scale simulation of the equilibrium response of vegetation and carbon from future climate change has shown relatively modest net gains in sequestration potential, but studies of the transient response has been limited to the sub-continent or landscape scale. The transient response depends on fine scale processes such as competition, disturbance, landscape characteristics, dispersal, and other factors, which makes it computational prohibitive at large domain sizes. To address this, this research used an advanced mechanistic model (Ecosystem Demography Model, ED) that is individually based, but pseudo-spatial, that reduces computational intensity while maintaining the fine scale processes that drive the transient response. First, the model was validated against remote sensing data for current plant functional type distribution in northern North America with a current climatology, and then a future climatology was used to predict the potential equilibrium redistribution of vegetation and carbon from future climate change. Next, to enable transient calculations, a method was developed to simulate the spatially explicit process of dispersal in pseudo-spatial modeling frameworks. Finally, the new dispersal sub-model was implemented in the mechanistic ecosystem model, and a model experimental design was designed and completed to estimate the transient response of vegetation and carbon to climate change. The potential equilibrium forest response to future climate change was found to be large, with large gross changes in distribution of plant functional types and comparatively smaller changes in net carbon sequestration potential for the region. However, the transient response was found to be on the order of centuries, and to depend strongly on disturbance rates and dispersal distances. Future work should explore the impact of species-specific disturbance and dispersal rates, landscape fragmentation, and other processes that influence migration rates and have been simulated at the sub-continent scale, but now at continental scales, and explore a range of alternative future climate scenarios as they continue to be developed.