2 resultados para Plant Development

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 hours. During the next 5-6 hours, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ~140 cilia. This document focuses on the role of motor proteins in the regulation of male gametophyte development and during ciliogenesis. In order to study the mechanisms that regulate spermatogenesis, RNAseq was used to generate a reference transcriptome that allowed us to assess the abundance of transcripts at different stages of development. Over 120 kinesin-like sequences were identified in the transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and ‘orphan’ kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses show that the temporal regulation of kinesin transcripts during gametogenesis directly correlates with kinesin protein function. Specifically, Marsilea makes one kinesin-2 (MvKinesin-2) and two kinesin-9 (MvKinesin-9A and MvKinesin-9B) transcripts, which are present during spermatid differentiation and ciliogenesis. Silencing experiments showed that MvKinesin-2 and MvKinesin-9A are required for ciliogenesis and motility in the Marsilea male gametophyte; however, these kinesins display atypical roles during these processes. In contrast, spermatozoids produced after the silencing of MvKinesin-9B exhibit normal morphology. MvKinesin-2 is necessary for cytokinesis as well as for regulating ciliary length and MvKinesin-9A is needed for the correct orientation of basal bodies, events not typically associated with these proteins. In addition, Marsilea makes motile, ciliated gametophytes without the help of IFT dynein, outer arm dynein, or the BBsome. These results are the first to investigate the kinesin-linked mechanisms that regulate ciliogenesis in a land plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fruit is one of the most complex and important structures produced by flowering plants, and understanding the development and maturation process of fruits in different angiosperm species with diverse fruit structures is of immense interest. In the work presented here, molecular genetics and genomic analysis are used to explore the processes that form the fruit in two species: The model organism Arabidopsis and the diploid strawberry Fragaria vesca. One important basic question concerns the molecular genetic basis of fruit patterning. A long-standing model of Arabidopsis fruit (the gynoecium) patterning holds that auxin produced at the apex diffuses downward, forming a gradient that provides apical-basal positional information to specify different tissue types along the gynoecium’s length. The proposed gradient, however, has never been observed and the model appears inconsistent with a number of observations. I present a new, alternative model, wherein auxin acts to establish the adaxial-abaxial domains of the carpel primordia, which then ensures proper development of the final gynoecium. A second project utilizes genomics to identify genes that regulate fruit color by analyzing the genome sequences of Fragaria vesca, a species of wild strawberry. Shared and distinct SNPs among three F. vesca accessions were identified, providing a foundation for locating candidate mutations underlying phenotypic variations among different F. vesca accessions. Through systematic analysis of relevant SNP variants, a candidate SNP in FveMYB10 was identified that may underlie the fruit color in the yellow-fruited accessions, which was subsequently confirmed by functional assays. Our lab has previously generated extensive RNA-sequencing data that depict genome-scale gene expression profiles in F. vesca fruit and flower tissues at different developmental stages. To enhance the accessibility of this dataset, the web-based eFP software was adapted for this dataset, allowing visualization of gene expression in any tissues by user-initiated queries. Together, this thesis work proposes a well-supported new model of fruit patterning in Arabidopsis and provides further resources for F. vesca, including genome-wide variant lists and the ability to visualize gene expression. This work will facilitate future work linking traits of economic importance to specific genes and gaining novel insights into fruit patterning and development.