4 resultados para Photodegradation in gill net materials
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Charge carrier lifetime measurements in bulk or unfinished photovoltaic (PV) materials allow for a more accurate estimate of power conversion efficiency in completed solar cells. In this work, carrier lifetimes in PV- grade silicon wafers are obtained by way of quasi-steady state photoconductance measurements. These measurements use a contactless RF system coupled with varying narrow spectrum input LEDs, ranging in wavelength from 460 nm to 1030 nm. Spectral dependent lifetime measurements allow for determination of bulk and surface properties of the material, including the intrinsic bulk lifetime and the surface recombination velocity. The effective lifetimes are fit to an analytical physics-based model to determine the desired parameters. Passivated and non-passivated samples are both studied and are shown to have good agreement with the theoretical model.
Resumo:
Recycled materials replacing part of virgin materials in highway applications has shown great benefits to the society and environment. Beneficial use of recycled materials can save landfill places, sparse natural resources, and energy consumed in milling and hauling virgin materials. Low price of recycled materials is favorable to cost-saving in pavement projects. Considering the availability of recycled materials in the State of Maryland (MD), four abundant recycled materials, recycled concrete aggregate (RCA), recycled asphalt pavement (RAP), foundry sand (FS), and dredged materials (DM), were studied. A survey was conducted to collect the information of current usage of the four recycled materials in States’ Department of Transportation (DOTs). Based on literature review, mechanical and environmental properties, recommendations, and suggested test standards were investigated separately for the four recycled materials in different applications. Constrains in using these materials were further studied in order to provide recommendations for the development of related MD specifications. To measure social and environmental benefits from using recycled materials, life-cycle assessment was carried out with life-cycle analysis (LCA) program, PaLATE, and green highway rating system, BEST-in-Highway. The survey results indicated the wide use of RAP and RCA in hot mix asphalt (HMA) and graded aggregate base (GAB) respectively, while FS and DM are less used in field. Environmental concerns are less, but the possibly low quality and some adverse mechanical characteristics may hinder the widely use of these recycled materials. Technical documents and current specifications provided by State DOTs are good references to the usage of these materials in MD. Literature review showed consistent results with the survey. Studies from experimental research or site tests showed satisfactory performance of these materials in highway applications, when the substitution rate, gradation, temperature, moisture, or usage of additives, etc. meet some requirements. The results from LCA revealed significant cost savings in using recycled materials. Energy and water consumption, gas emission, and hazardous waste generation generally showed reductions to some degree. Use of new recycled technologies will contribute to more sustainable highways.
Resumo:
Nanocomposite energetics are a relatively new class of materials that combine nanoscale fuels and oxidizers to allow for the rapid release of large amounts of energy. In thermite systems (metal fuel with metal oxide oxidizer), the use of nanomaterials has been illustrated to increase reactivity by multiple orders of magnitude as a result of the higher specific surface area and smaller diffusion length scales. However, the highly dynamic and nanoscale processes intrinsic to these materials, as well as heating rate dependencies, have limited our understanding of the underlying processes that control reaction and propagation. For my dissertation, I have employed a variety of experimental approaches that have allowed me to probe these processes at heating rates representative of free combustion with the goal of understanding the fundamental mechanisms. Dynamic transmission electron microscopy (DTEM) was used to study the in situ morphological change that occurs in nanocomposite thermite materials subjected to rapid (10^11 K/s) heating. Aluminum nanoparticle (Al-NP) aggregates were found to lose their nanostructure through coalescence in as little as 10 ns, which is much faster than any other timescale of combustion. Further study of nanoscale reaction with CuO determined that a condensed phase interfacial reaction could occur within 0.5-5 µs in a manner consistent with bulk reaction, which supports that this mechanism plays a dominant role in the overall reaction process. Ta nanocomposites were also studied to determine if a high melting point (3280 K) affects the loss of nanostructure and rate of reaction. The condensed phase reaction pathway was further explored using reactive multilayers sputter deposited onto thin Pt wires to allow for temperature jump (T-Jump) heating at rates of ~5x10^5 K/s. High speed video and a time of flight mass spectrometry (TOFMS) were used to observe ignition temperature and speciation as a function of bilayer thickness. The ignition process was modeled and a low activation energy for effective diffusivity was determined. T-Jump TOFMS along with constant volume combustion cell studies were also used to determine the effect of gas release in nanoparticle systems by comparing the reaction properties of CuO and Cu2O.
Resumo:
This dissertation examines the price sensitivity of demand for higher education among non-traditional students in the United States. Chapter 1 discusses the issues related to the demand for higher education. It presents the recent trends and reviews the literature addressing these issues. A major conclusion that emerges from this chapter is that the price sensitivity of demand for higher education appears to depend on the source of the variation in price and the characteristics of the students who face the price change. The baseline estimate for the price sensitivity of demand is that a $1,000 (in year 2000 dollars) decrease in tuition costs should result in a 4 percentage-point increase in enrollment for the traditional 18- to 24-year-old student. Chapter 2 examines the price sensitivity of demand for higher education for military spouses resulting from variation in tuition due to military-mandated moves across states. The data suggest that a $1,000 (in year 2000 dollars) decrease in the cost of 2-year schools is associated with a 1--1.5 percentage-point increase in the probability of attending college. This estimate is less than half the previous estimates due to in-state tuition price differences faced by the civilian 18- to 24-year-old population on a percentage-point basis. However, this represents a 7--10 percent increase for this population, and the magnitude of this metric is in line with previous estimates. This suggests tuition assistance can be an effective means of increasing enrollment for military spouses, but other barriers to education for this population may also need to be addressed. Chapter 3 examines the impact of a change in the tax treatment of savings set aside for higher education by those who decide to suspend their education and enter the workforce. The taxation of these funds appears to have increased the rate at which these funds are included in an employee's initial contract and the quantity of funds allocated. These results are counterintuitive if the tax preference was the primary reason for the savings plan. However, these results suggest the rationale for the savings plan was to offer targeted additional compensation to recruits with greater negotiating power. Taxation of funds previously set aside did not appear to have a statistically significant impact on their utilization. Point estimates of the price sensitivity of demand from changes in the out-of-pocket costs for higher education induced by the taxation of these funds were small and often not statistically significant. The results from this dissertation show responses to changes in the net cost of college that differ by the source of price variation and the population experiencing them. This is consistent with the previous literature. This dissertation contributes to the literature by providing estimates for the price sensitivity of demand for higher education to previously understudied non-traditional students.