2 resultados para Photochemistry.

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 ± 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background, intensifies the conversion of HO2 to OH, increasing OH by a factor of 1.4. Comparisons between the global chemistry model CAM-Chem and observations show that consistent underestimates of HCHO by CAM-Chem throughout the troposphere result from underestimates in both NO and acetaldehyde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional organic chemistry has long been dominated by ground state thermal reactions. The alternative to this is excited state chemistry, which uses light to drive chemical transformations. There is considerable interest in using this clean renewable energy source due to concerns surrounding the combustion byproducts associated with the consumption of fossil fuels. The work presented in this text will focus on the use of light (both ultraviolet and visible) for the following quantitative chemical transformations: (1) the release of compounds containing carboxylic acid and alcohol functional groups and (2) the conversion of carbon dioxide into other useable chemicals. Chapters 1-3 will introduce and explore the use of photoremovable protecting groups (PPGs) for the spatiotemporal control of molecular concentrations. Two new PPGs are discussed, the 2,2,2-tribromoethoxy group for the protection of carboxylic acids and the 9-phenyl-9-tritylone group for the protection of alcohols. Fundamental interest in the factors that affect C–X bond breaking has driven the work presented in this text for the release of carboxylic acid substrates. Product analysis from the UV photolysis of 2,2,2-tribromoethyl-(2′-phenylacetate) in various solvents results in the formation of H–atom abstraction products as well as the release of phenylacetic acid. The deprotection of alcohols is realized through the use of UV or visible light photolysis of 9-phenyl-9-tritylone ethers. Central to this study is the use of photoinduced electron transfer chemistry for the generation of ion diradicals capable of undergoing bond-breaking chemistry leading to the release of the alcohol substrates. Chapters 4 and 5 will explore the use of N-heterocyclic carbenes (NHCs) as a catalyst for the photochemical reduction of carbon dioxide. Previous experiments have demonstrated that NHCs can add to CO2 to form stable zwitterionic species known as N-heterocylic-2-carboxylates (NHC–CO2). Work presented in this text illustrate that the stability of these species is highly dependent on solvent polarity, consistent with a lengthening of the imidazolium to carbon dioxide bond (CNHC–CCO2). Furthermore, these adducts interact with excited state electron donors resulting in the generation of ion diradicals capable of converting carbon dioxide into formic acid.