2 resultados para Pea lectin gene
em DRUM (Digital Repository at the University of Maryland)
Resumo:
During ecological speciation, divergent natural selection drives evolution of ecological specialization and genetic differentiation of populations on alternate environments. Populations diverging onto the same alternate environments may be geographically widespread, so that divergence may occur at an array of locations simultaneously. Spatial variation in the process of divergence may produce a pattern of differences in divergence among locations called the Geographic Mosaic of Divergence. Diverging populations may vary in their degree of genetic differentiation and ecological specialization among locations. My dissertation examines the pattern and evolutionary processes of divergence in pea aphids (Acyrthosiphon pisum) on alfalfa (Medicago sativa) and clover (Trifolium pretense). In Chapter One, I examined differences among North American aphid populations in genetic differentiation at nuclear, sequence-based markers and in ecological specialization, measured as aphid fecundity on each host plant. In the East, aphids showed high host-plant associated ecological specialization and high genetic differentiation. In the West, aphids from clover were genetically indistinguishable from aphids on alfalfa, and aphids from clover were less specialized. Thus, the pattern of divergence differed among locations, suggesting a Geographic Mosaic of Divergence. In Chapter Two, I examined genomic heterogeneity in divergence in aphids on alfalfa and clover across North America using amplified fragment length polymorphisms (AFLPs). The degree of genetic differentiation varied greatly among markers, suggesting that divergent natural selection drives aphid divergence in all geographic locations. Three of the same genetic markers were identified as evolving under divergent selection in the eastern and western regions, and additional divergent markers were identified in the East. In Chapter Three, I investigated population structure of aphids in North America, France, and Sweden using AFLPs. Aphids on the same host plant were genetically similar across many parts of their range, so the evolution of host plant specialization does not appear to have occurred independently in every location. While aphids on alfalfa and clover were genetically differentiated in most locations, aphids from alfalfa and clover were genetically similar in both western North America and Sweden. High gene flow from alfalfa onto clover may constrain divergence in these locations.
Resumo:
Ecological risk assessment (ERA) is a framework for monitoring risks of exposure and adverse effects of environmental stressors to populations or communities of interest. One tool of ERA is the biomarker, which is a characteristic of an organism that reliably indicates exposure to or effects of a stressor like chemical pollution. Traditional biomarkers which rely on characteristics at the tissue level and higher often detect only acute exposures to stressors. Sensitive molecular biomarkers may detect lower stressor levels than traditional biomarkers, which helps inform risk mitigation and restoration efforts before populations and communities are irreversibly affected. In this study I developed gene expression-based molecular biomarkers of exposure to metals and insecticides in the model toxicological freshwater amphipod Hyalella azteca. My goals were to not only create sensitive molecular biomarkers for these chemicals, but also to show the utility and versatility of H. azteca in molecular studies for toxicology and risk assessment. I sequenced and assembled the H. azteca transcriptome to identify reference and stress-response gene transcripts suitable for expression monitoring. I exposed H. azteca to sub-lethal concentrations of metals (cadmium and copper) and insecticides (DDT, permethrin, and imidacloprid). Reference genes used to create normalization factors were determined for each exposure using the programs BestKeeper, GeNorm, and NormFinder. Both metals increased expression of a nuclear transcription factor (Cnc), an ABC transporter (Mrp4), and a heat shock protein (Hsp90), giving evidence of general metal exposure signature. Cadmium uniquely increased expression of a DNA repair protein (Rad51) and increased Mrp4 expression more than copper (7-fold increase compared to 2-fold increase). Together these may be unique biomarkers distinguishing cadmium and copper exposures. DDT increased expression of Hsp90, Mrp4, and the immune response gene Lgbp. Permethrin increased expression of a cytochrome P450 (Cyp2j2) and decreased expression of the immune response gene Lectin-1. Imidacloprid did not affect gene expression. Unique biomarkers were seen for DDT and permethrin, but the genes studied were not sensitive enough to detect imidacloprid at the levels used here. I demonstrated that gene expression in H. azteca detects specific chemical exposures at sub-lethal concentrations, making expression monitoring using this amphipod a useful and sensitive biomarker for risk assessment of chemical exposure.