2 resultados para Papid Prototyping

em DRUM (Digital Repository at the University of Maryland)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents a case study of collaborative research through design with Floracaching, a gamified mobile application for citizen science biodiversity data collection. One contribution of this study is the articulation of collaborative research through design (CRtD), an approach that blends cooperative design approaches with the research through design methodology (RtD). Collaborative research through design is thus defined as an iterative process of cooperative design, where the collaborative vision of an ideal state is embedded in a design. Applying collaborative research through design with Floracaching illustrates how a number of cooperative techniques—especially contextual inquiry, prototyping, and focus groups—may be applied in a research through design setting. Four suggestions for collaborative research through design (recruit from a range of relevant backgrounds; take flexibility as a goal; enable independence and agency; and, choose techniques that support agreement or consensus) are offered to help others who wish to experiment with this new approach. Applying collaborative research through design to Floracaching yielded a new prototype of the application, accompanied by design annotations in the form of framing constructs for designing to support mobile, place-based citizen science activities. The prototype and framing constructs, which may inform other designers of similar citizen science technologies, are a second contribution of this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents work done in the design, modeling, and fabrication of magnetically actuated microrobot legs. Novel fabrication processes for manufacturing multi-material compliant mechanisms have been used to fabricate effective legged robots at both the meso and micro scales, where the meso scale refers to the transition between macro and micro scales. This work discusses the development of a novel mesoscale manufacturing process, Laser Cut Elastomer Refill (LaCER), for prototyping millimeter-scale multi-material compliant mechanisms with elastomer hinges. Additionally discussed is an extension of previous work on the development of a microscale manufacturing process for fabricating micrometer-sale multi-material compliant mechanisms with elastomer hinges, with the added contribution of a method for incorporating magnetic materials for mechanism actuation using externally applied fields. As both of the fabrication processes outlined make significant use of highly compliant elastomer hinges, a fast, accurate modeling method for these hinges was desired for mechanism characterization and design. An analytical model was developed for this purpose, making use of the pseudo rigid-body (PRB) model and extending its utility to hinges with significant stretch component, such as those fabricated from elastomer materials. This model includes 3 springs with stiffnesses relating to material stiffness and hinge geometry, with additional correction factors for aspects particular to common multi-material hinge geometry. This model has been verified against a finite element analysis model (FEA), which in turn was matched to experimental data on mesoscale hinges manufactured using LaCER. These modeling methods have additionally been verified against experimental data from microscale hinges manufactured using the Si/elastomer/magnetics MEMS process. The development of several mechanisms is also discussed: including a mesoscale LaCER-fabricated hexapedal millirobot capable of walking at 2.4 body lengths per second; prototyped mesoscale LaCER-fabricated underactuated legs with asymmetrical features for improved performance; 1 centimeter cubed LaCER-fabricated magnetically-actuated hexapods which use the best-performing underactuated leg design to locomote at up to 10.6 body lengths per second; five microfabricated magnetically actuated single-hinge mechanisms; a 14-hinge, 11-link microfabricated gripper mechanism; a microfabricated robot leg mechansim demonstrated clearing a step height of 100 micrometers; and a 4 mm x 4 mm x 5 mm, 25 mg microfabricated magnetically-actuated hexapod, demonstrated walking at up to 2.25 body lengths per second.