2 resultados para Panicum dichotomiflorum Michx

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing plant diversity in conventionally monoculture agrosystems has been promoted as a method to enhance beneficial arthropod density and efficacy, suppress herbivory and provide a range of ecosystem services. I investigated the pest suppressive potential and economic impact of plant diversification in organic field corn. The experiment consisted of two treatments, corn grown in monoculture (C) and bordered by strips of partridge pea (PP). Pest and natural enemy populations, corn damage, yield, and profits were compared among treatments. Natural enemy and herbivore arthropod populations were affected by treatment and distance from plot border. Corn damage due to pests was also affected by treatment and location, but did not significantly affect yield. Yield in monoculture plots was generally greater than in PP but did not result in greater profit. Pest and natural enemy arthropod abundances were elevated in partridge pea treatment borders, but these populations did not consistently diffuse into plot interiors. The potential causes and implications of findings are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.