4 resultados para PDE-based parallel preconditioner

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various mechanisms have been proposed to explain extreme waves or rogue waves in an oceanic environment including directional focusing, dispersive focusing, wave-current interaction, and nonlinear modulational instability. The Benjamin-Feir instability (nonlinear modulational instability), however, is considered to be one of the primary mechanisms for rogue-wave occurrence. The nonlinear Schrodinger equation is a well-established approximate model based on the same assumptions as required for the derivation of the Benjamin-Feir theory. Solutions of the nonlinear Schrodinger equation, including new rogue-wave type solutions are presented in the author's dissertation work. The solutions are obtained by using a predictive eigenvalue map based predictor-corrector procedure developed by the author. Features of the predictive map are explored and the influences of certain parameter variations are investigated. The solutions are rescaled to match the length scales of waves generated in a wave tank. Based on the information provided by the map and the details of physical scaling, a framework is developed that can serve as a basis for experimental investigations into a variety of extreme waves as well localizations in wave fields. To derive further fundamental insights into the complexity of extreme wave conditions, Smoothed Particle Hydrodynamics (SPH) simulations are carried out on an advanced Graphic Processing Unit (GPU) based parallel computational platform. Free surface gravity wave simulations have successfully characterized water-wave dispersion in the SPH model while demonstrating extreme energy focusing and wave growth in both linear and nonlinear regimes. A virtual wave tank is simulated wherein wave motions can be excited from either side. Focusing of several wave trains and isolated waves has been simulated. With properly chosen parameters, dispersion effects are observed causing a chirped wave train to focus and exhibit growth. By using the insights derived from the study of the nonlinear Schrodinger equation, modulational instability or self-focusing has been induced in a numerical wave tank and studied through several numerical simulations. Due to the inherent dissipative nature of SPH models, simulating persistent progressive waves can be problematic. This issue has been addressed and an observation-based solution has been provided. The efficacy of SPH in modeling wave focusing can be critical to further our understanding and predicting extreme wave phenomena through simulations. A deeper understanding of the mechanisms underlying extreme energy localization phenomena can help facilitate energy harnessing and serve as a basis to predict and mitigate the impact of energy focusing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A poster of this paper will be presented at the 25th International Conference on Parallel Architecture and Compilation Technology (PACT ’16), September 11-15, 2016, Haifa, Israel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a task must be executed in a remote or dangerous environment, teleoperation systems may be employed to extend the influence of the human operator. In the case of manipulation tasks, haptic feedback of the forces experienced by the remote (slave) system is often highly useful in improving an operator's ability to perform effectively. In many of these cases (especially teleoperation over the internet and ground-to-space teleoperation), substantial communication latency exists in the control loop and has the strong tendency to cause instability of the system. The first viable solution to this problem in the literature was based on a scattering/wave transformation from transmission line theory. This wave transformation requires the designer to select a wave impedance parameter appropriate to the teleoperation system. It is widely recognized that a small value of wave impedance is well suited to free motion and a large value is preferable for contact tasks. Beyond this basic observation, however, very little guidance exists in the literature regarding the selection of an appropriate value. Moreover, prior research on impedance selection generally fails to account for the fact that in any realistic contact task there will simultaneously exist contact considerations (perpendicular to the surface of contact) and quasi-free-motion considerations (parallel to the surface of contact). The primary contribution of the present work is to introduce an approximate linearized optimum for the choice of wave impedance and to apply this quasi-optimal choice to the Cartesian reality of such a contact task, in which it cannot be expected that a given joint will be either perfectly normal to or perfectly parallel to the motion constraint. The proposed scheme selects a wave impedance matrix that is appropriate to the conditions encountered by the manipulator. This choice may be implemented as a static wave impedance value or as a time-varying choice updated according to the instantaneous conditions encountered. A Lyapunov-like analysis is presented demonstrating that time variation in wave impedance will not violate the passivity of the system. Experimental trials, both in simulation and on a haptic feedback device, are presented validating the technique. Consideration is also given to the case of an uncertain environment, in which an a priori impedance choice may not be possible.