3 resultados para Oxidative
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Neuronal stretching during concussion alters glucose transport and reduces neuronal viability, also affecting other cells in the brain and the Blood Brain Barrier (BBB). Our hypothesis is that oxidative stress (OS) generated in neurons during concussions contributes to this outcome. To validate this, we investigated: (1) whether OS independently causes alterations in brain and BBB cells, namely human neuron-like, neuroblastoma cells (NCs), astrocyte cells (ACs) and brain microvascular endothelial cells (ECs), and (2) whether OS originated in NCs (as in concussion) is responsible for causing the subsequent alterations observed in ACs and ECs. We used H2O2 treatment to mimic OS, validated by examining the resulting reactive oxygen species, and evaluated alterations in cell morphology, expression and localization of the glucose transporter GLUT1, and the overall cell viability. Our results showed that OS, either directly affecting each cell type or originally affecting NCs, caused changes in several morphological parameters (surface area, Feret diameter, circularity, inter-cellular distance), slightly varied GLUT1 expression and lowered the overall cell viability of all NCs, ACs, and ECs. Therefore, we can conclude that oxidative stress, which is known to be generated during concussion, caused alterations in NCs, ACs, and ECs whether independently originated in each cell or when originated in the NCs and could further propagate the ACs and ECs.
Resumo:
Hydroxyl radical (OH) is the primary oxidant in the troposphere, initiating the removal of numerous atmospheric species including greenhouse gases, pollutants that are detrimental to human health, and ozone-depleting substances. Because of the complexity of OH chemistry, models vary widely in their OH chemistry schemes and resulting methane (CH4) lifetimes. The current state of knowledge concerning global OH abundances is often contradictory. This body of work encompasses three projects that investigate tropospheric OH from a modeling perspective, with the goal of improving the tropospheric community’s knowledge of the atmospheric lifetime of CH4. First, measurements taken during the airborne CONvective TRansport of Active Species in the Tropics (CONTRAST) field campaign are used to evaluate OH in global models. A box model constrained to measured variables is utilized to infer concentrations of OH along the flight track. Results are used to evaluate global model performance, suggest against the existence of a proposed “OH Hole” in the tropical Western Pacific, and investigate implications of high O3/low H2O filaments on chemical transport to the stratosphere. While methyl chloroform-based estimates of global mean OH suggest that models are overestimating OH, we report evidence that these models are actually underestimating OH in the tropical Western Pacific. The second project examines OH within global models to diagnose differences in CH4 lifetime. I developed an approach to quantify the roles of OH precursor field differences (O3, H2O, CO, NOx, etc.) using a neural network method. This technique enables us to approximate the change in CH4 lifetime resulting from variations in individual precursor fields. The dominant factors driving CH4 lifetime differences between models are O3, CO, and J(O3-O1D). My third project evaluates the effect of climate change on global fields of OH using an empirical model. Observations of H2O and O3 from satellite instruments are combined with a simulation of tropical expansion to derive changes in global mean OH over the past 25 years. We find that increasing H2O and increasing width of the tropics tend to increase global mean OH, countering the increasing CH4 sink and resulting in well-buffered global tropospheric OH concentrations.
Resumo:
Miller Range (MIL) Martian meteorites are oxidized nakhlites. Early studies attribute their oxidation to reduction-oxidation reactions involving assimilated sulfate. I utilize the sulfur isotope and major element composition of the MIL pairs to assess their oxidative history. MIL sulfides display an average sulfur isotope composition that is different from Nakhla sulfate and sulfide. The sulfur isotope differences produce a mixing array between juvenile sulfur and mass-independent sulfur signatures, indicating assimilation of anomalous sulfur into the melt. I estimate an fO2 of QFM (+3.5 ± 0.4) and a sulfur content of 360 ppm ± 12 – 1300 ppm ± 50. With these results, I test the hypothesis of sulfate assimilation through models of charge balance, isotope mixing, and degassing of sulfur bearing compounds. I conclude that sulfate assimilation was significant in the oxidation of the MIL pairs but, additional oxidants were assimilated.