3 resultados para Online analytical processing (OLAP)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
In economics of information theory, credence products are those whose quality is difficult or impossible for consumers to assess, even after they have consumed the product (Darby & Karni, 1973). This dissertation is focused on the content, consumer perception, and power of online reviews for credence services. Economics of information theory has long assumed, without empirical confirmation, that consumers will discount the credibility of claims about credence quality attributes. The same theories predict that because credence services are by definition obscure to the consumer, reviews of credence services are incapable of signaling quality. Our research aims to question these assumptions. In the first essay we examine how the content and structure of online reviews of credence services systematically differ from the content and structure of reviews of experience services and how consumers judge these differences. We have found that online reviews of credence services have either less important or less credible content than reviews of experience services and that consumers do discount the credibility of credence claims. However, while consumers rationally discount the credibility of simple credence claims in a review, more complex argument structure and the inclusion of evidence attenuate this effect. In the second essay we ask, “Can online reviews predict the worst doctors?” We examine the power of online reviews to detect low quality, as measured by state medical board sanctions. We find that online reviews are somewhat predictive of a doctor’s suitability to practice medicine; however, not all the data are useful. Numerical or star ratings provide the strongest quality signal; user-submitted text provides some signal but is subsumed almost completely by ratings. Of the ratings variables in our dataset, we find that punctuality, rather than knowledge, is the strongest predictor of medical board sanctions. These results challenge the definition of credence products, which is a long-standing construct in economics of information theory. Our results also have implications for online review users, review platforms, and for the use of predictive modeling in the context of information systems research.
Resumo:
The atomic-level structure and chemistry of materials ultimately dictate their observed macroscopic properties and behavior. As such, an intimate understanding of these characteristics allows for better materials engineering and improvements in the resulting devices. In our work, two material systems were investigated using advanced electron and ion microscopy techniques, relating the measured nanoscale traits to overall device performance. First, transmission electron microscopy and electron energy loss spectroscopy (TEM-EELS) were used to analyze interfacial states at the semiconductor/oxide interface in wide bandgap SiC microelectronics. This interface contains defects that significantly diminish SiC device performance, and their fundamental nature remains generally unresolved. The impacts of various microfabrication techniques were explored, examining both current commercial and next-generation processing strategies. In further investigations, machine learning techniques were applied to the EELS data, revealing previously hidden Si, C, and O bonding states at the interface, which help explain the origins of mobility enhancement in SiC devices. Finally, the impacts of SiC bias temperature stressing on the interfacial region were explored. In the second system, focused ion beam/scanning electron microscopy (FIB/SEM) was used to reconstruct 3D models of solid oxide fuel cell (SOFC) cathodes. Since the specific degradation mechanisms of SOFC cathodes are poorly understood, FIB/SEM and TEM were used to analyze and quantify changes in the microstructure during performance degradation. Novel strategies for microstructure calculation from FIB-nanotomography data were developed and applied to LSM-YSZ and LSCF-GDC composite cathodes, aged with environmental contaminants to promote degradation. In LSM-YSZ, migration of both La and Mn cations to the grain boundaries of YSZ was observed using TEM-EELS. Few substantial changes however, were observed in the overall microstructure of the cells, correlating with a lack of performance degradation induced by the H2O. Using similar strategies, a series of LSCF-GDC cathodes were analyzed, aged in H2O, CO2, and Cr-vapor environments. FIB/SEM observation revealed considerable formation of secondary phases within these cathodes, and quantifiable modifications of the microstructure. In particular, Cr-poisoning was observed to cause substantial byproduct formation, which was correlated with drastic reductions in cell performance.