2 resultados para Off-line training
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Rainflow counting methods convert a complex load time history into a set of load reversals for use in fatigue damage modeling. Rainflow counting methods were originally developed to assess fatigue damage associated with mechanical cycling where creep of the material under load was not considered to be a significant contributor to failure. However, creep is a significant factor in some cyclic loading cases such as solder interconnects under temperature cycling. In this case, fatigue life models require the dwell time to account for stress relaxation and creep. This study develops a new version of the multi-parameter rainflow counting algorithm that provides a range-based dwell time estimation for use with time-dependent fatigue damage models. To show the applicability, the method is used to calculate the life of solder joints under a complex thermal cycling regime and is verified by experimental testing. An additional algorithm is developed in this study to provide data reduction in the results of the rainflow counting. This algorithm uses a damage model and a statistical test to determine which of the resultant cycles are statistically insignificant to a given confidence level. This makes the resulting data file to be smaller, and for a simplified load history to be reconstructed.
Resumo:
Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.