3 resultados para Nonclassical Field States
em DRUM (Digital Repository at the University of Maryland)
Resumo:
In support of the achievement goal theory (AGT), empirical research has demonstrated psychosocial benefits of the mastery-oriented learning climate. In this study, we examined the effects of perceived coaching behaviors on various indicators of psychosocial well-being (competitive anxiety, self-esteem, perceived competence, enjoyment, and future intentions for participation), as mediated by perceptions of the coach-initiated motivational climate, achievement goal orientations and perceptions of sport-specific skills efficacy. Using a pre-post test design, 1,464 boys, ages 10-15 (M = 12.84 years, SD = 1.44), who participated in a series of 12 football skills clinics were surveyed from various locations across the United States. Using structural equation modeling (SEM) path analysis and hierarchical regression analysis, the cumulative direct and indirect effects of the perceived coaching behaviors on the psychosocial variables at post-test were parsed out to determine what types of coaching behaviors are more conducive to the positive psychosocial development of youth athletes. The study demonstrated that how coaching behaviors are perceived impacts the athletes’ perceptions of the motivational climate and achievement goal orientations, as well as self-efficacy beliefs. These effects in turn affect the athletes’ self-esteem, general competence, sport-specific competence, competitive anxiety, enjoyment, and intentions to remain involved in the sport. The findings also clarify how young boys internalize and interpret coaches’ messages through modification of achievement goal orientations and sport-specific efficacy beliefs.
Resumo:
Most major cities in the eastern United States have air quality deemed unhealthy by the EPA under a set of regulations known as the National Ambient Air Quality Standards (NAAQS). The worst air quality in Maryland is measured in Edgewood, MD, a small community located along the Chesapeake Bay and generally downwind of Baltimore during hot, summertime days. Direct measurements and numerical simulations were used to investigate how meteorology and chemistry conspire to create adverse levels of photochemical smog especially at this coastal location. Ozone (O3) and oxidized reactive nitrogen (NOy), a family of ozone precursors, were measured over the Chesapeake Bay during a ten day experiment in July 2011 to better understand the formation of ozone over the Bay and its impact on coastal communities such as Edgewood. Ozone over the Bay during the afternoon was 10% to 20% higher than the closest upwind ground sites. A combination of complex boundary layer dynamics, deposition rates, and unaccounted marine emissions play an integral role in the regional maximum of ozone over the Bay. The CAMx regional air quality model was assessed and enhanced through comparison with data from NASA’s 2011 DISCOVER-AQ field campaign. Comparisons show a model overestimate of NOy by +86.2% and a model underestimate of formaldehyde (HCHO) by –28.3%. I present a revised model framework that better captures these observations and the response of ozone to reductions of precursor emissions. Incremental controls on electricity generating stations will produce greater benefits for surface ozone while additional controls on mobile sources may yield less benefit because cars emit less pollution than expected. Model results also indicate that as ozone concentrations improve with decreasing anthropogenic emissions, the photochemical lifetime of tropospheric ozone increases. The lifetime of ozone lengthens because the two primary gas-phase sinks for odd oxygen (Ox ≈ NO2 + O3) – attack by hydroperoxyl radicals (HO2) on ozone and formation of nitrate – weaken with decreasing pollutant emissions. This unintended consequence of air quality regulation causes pollutants to persist longer in the atmosphere, and indicates that pollutant transport between states and countries will likely play a greater role in the future.
Resumo:
Multi-peril crop insurance is a valuable risk management tool which allows you to insure against losses on your farm due to adverse weather conditions, price fluctuations, and unavoidable pests and diseases. It shifts unavoidable production risks to an insurance company for the payment of a fixed amount of premium per acre. This publication assists readers in understanding the basics of the federal crop insurance program.