2 resultados para Neotropical bat
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The overwhelming majority of flowering plant species depend on animals for pollination, and such pollinators are important for the reproductive success of many economically and environmentally important plant species. Yet pollinators in the Old World tropics are relatively understudied, particularly paleotropical nectarivorous bats (Pteropodidae), and much is unknown about their interactions with night-blooming plant species. To better understand these bat-plant pollination interactions, I conducted fieldwork in southern Thailand for a total of 20 months, spread across three years. I examined the foraging times of pteropodid bat species (Chapter 1), and found that strictly nectarivorous species foraged earlier, and for a shorter duration, than primarily frugivorous species. I also studied year-long foraging patterns of pteropodid bats to determine how different species track floral resources across seasons (Chapter 2). Larger species capable of flying long distances switched diets seasonally to forage on the most abundant floral species, while smaller species foraged throughout the year on nearby plant species that were low-rewarding but highly reliable. To determine which pteropodid species are potentially important pollinators, I quantified the frequency and effectiveness of their visits to six common bat-pollinated plant taxa for an entire year (Chapter 3). The three strictly nectarivorous species were responsible for almost all pollination, but pollinator importance of each bat species varied across plant species. I further examined the long-term reliability of these pollinators (Chapter 4), and found that pollinator importance values were consistent across the three study years. Lastly, I explored mechanisms that reduce interspecific pollen transfer among bat-pollinated plants, despite having shared pollinators. Using a flight cage experiment, I demonstrated that these plant species deposit pollen on different areas of the bat’s body (mechanical partitioning), resulting in greater pollen transfer between conspecific flowers than heterospecific flowers (Chapter 5). Additionally, while I observed ecological and phenological overlap among flowering plant species, pollinators exhibited high floral constancy within a night, resulting in strong ethological separation (Chapter 6). Collectively, these findings illustrate the importance of understudied Old World bat pollinators within a mixed agricultural-forest system, and their strong, interdependent interactions with bat-pollinated plant species within a night, across seasons, and across years.
Resumo:
As the number of fungal pathogen outbreaks become more frequent worldwide across taxa, so have the number of species extirpations and communities persisting with the pathogen. This phenomenon raises questions, such as: “what leads to host extinction during an outbreak?” and “how are hosts persisting once the pathogen establishes?.” But the data on host populations and communities across life stages before and after pathogen arrival rarely exist to answer these questions. Over the past three to four decades, the amphibian-killing fungus Batrachochytrim dendrobatidis (Bd) spread in a wave-like manner across Central America, leading to rapid species extirpations and population declines. I collected data on tadpole and adult amphibians in El Copé, Panama before, during, and after the Bd outbreak to answer these questions. I used Bayesian statistical approaches to account for imperfect host and pathogen detection of marked and unmarked individuals. In the tadpole community, within 11 months of Bds arrival, density and occupancy rapidly declined. Species losses were phylogenetically correlated, with glass frogs disappearing first, and tree frogs and poison-dart frogs remaining. I found that tadpole communities resembled one another more strongly after the outbreak than they did before Bd invasion. I found no tadpoles within 22 months of the outbreak and limited signs of recovery within 10 years. In contrast, at the same site, for a population of male glass frogs, Espadarana prosopleon, I found that 10 years post-outbreak, the population was consistently half its historic abundance, and that the lack of recruits to the population explained why the population had not rebounded, rather than high pathogen-induced mortality. And finally, examining the entire amphibian community, I found high pathogen prevalence, low infection intensities, and high survival rates of uninfected and infected hosts. Bd transmission risk, i.e., the probability a susceptible host becomes infected, did not relate to host density, pathogen prevalence, or infection intensity– Bd transmission risk was uniform across the study area. My results are especially relevant to conservation biologists aiming to predict the future impacts of Bd outbreaks, those trying to manage persisting populations, and those interested in reintroducing species back into wild amphibian communities.