3 resultados para Nascent venture
em DRUM (Digital Repository at the University of Maryland)
Resumo:
The purpose of this study was to investigate the nature of the relationship between middle school science learners’ conditions and their developing understandings of climate change. I applied the anthropological theoretical perspective of figured worlds (Holland, Lachicotte, Skinner, & Cain, 1998) to examine learners’ views of themselves and their capacities to act in relation to climate change. My overarching research question was: How are middle school science learners’ figured worlds of climate change related to the conditions in which they are embedded? I used a descriptive single-case study design to examine the climate change ideas of eight purposefully selected 6th grade science learners. Data sources included: classroom observations, curriculum documents, interviews, focus groups, and written assessments and artifacts, including learners’ self- generated drawings. I identified six analytic lenses with which to explore the data. Insights from the application of these analytic lenses provided information about the elements of participants’ climate change stories, which I reported through the use of a storytelling heuristic. I then synthesized elements of participants’ collective climate change story, which provided an “entrance” (Kitchell, Hannan, & Kempton, 2000, p. 96) into their figured world of climate change. Aspects of learners’ conditions—such as their worlds of school, technology and media use, and family—appeared to shape their figured world of climate change. Within their figured world of climate change, learners saw themselves—individually and as members of groups—as inhabiting a variety of climate change identities, some of which were in conflict with each other. I posited that learners’ enactment of these identities – or the ways in which they expressed their climate change agency – had the potential to reshape or reinforce their conditions. Thus, learners’ figured worlds of climate change might be considered “spaces of authoring” (Holland et al., 1998, p. 45) with potential for inciting social and environmental change. The nature of such change would hinge on the extent to which these nascent climate change identities become salient for these early adolescent learners through their continued climate change learning experiences. Implications for policy, curriculum and instruction, and science education research related to climate change education are presented.
Resumo:
Like any new business venture, starting a distillery requires careful planning and a major investment of resources. Marylanders interested in opening a distillery should consider taking classes and talking to existing distillers before starting out on their own. This guide is intended to provide an overview of the legal process of getting the required licenses and permits needed to open a distillery.
Resumo:
The survival and descent of cells is universally dependent on maintaining their proteins in a properly folded condition. It is widely accepted that the information for the folding of the nascent polypeptide chain into a native protein is encrypted in the amino acid sequence, and the Nobel Laureate Christian Anfinsen was the first to demonstrate that a protein could spontaneously refold after complete unfolding. However, it became clear that the observed folding rates for many proteins were much slower than rates estimated in vivo. This led to the recognition of required protein-protein interactions that promote proper folding. A unique group of proteins, the molecular chaperones, are responsible for maintaining protein homeostasis during normal growth as well as stress conditions. Chaperonins (CPNs) are ubiquitous and essential chaperones. They form ATP-dependent, hollow complexes that encapsulate polypeptides in two back-to-back stacked multisubunit rings, facilitating protein folding through highly cooperative allosteric articulation. CPNs are usually classified into Group I and Group II. Here, I report the characterization of a novel CPN belonging to a third Group, recently discovered in bacteria. Group III CPNs have close phylogenetic association to the Group II CPNs found in Archaea and Eukarya, and may be a relic of the Last Common Ancestor of the CPN family. The gene encoding the Group III CPN from Carboxydothermus hydrogenoformans and Candidatus Desulforudis audaxviator was cloned in E. coli and overexpressed in order to both characterize the protein and to demonstrate its ability to function as an ATPase chaperone. The opening and closing cycle of the Chy chaperonin was examined via site-directed mutations affecting the ATP binding site at R155. To relate the mutational analysis to the structure of the CPN, the crystal structure of both the AMP-PNP (an ATP analogue) and ADP bound forms were obtained in collaboration with Sun-Shin Cha in Seoul, South Korea. The ADP and ATP binding site substitutions resulted in frozen forms of the structures in open and closed conformations. From this, mutants were designed to validate hypotheses regarding key ATP interacting sites as well as important stabilizing interactions, and to observe the physical properties of the resulting complexes by calorimetry.