3 resultados para Nanostructures

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has emerged as an extraordinary material with its capability to accommodate an array of remarkable electronic, mechanical and chemical properties. Extra-large surface-to-volume ratio renders graphene a highly flexible morphology, giving rise to intriguing observations such as ripples, wrinkles and folds as well as the potential to transform into other novel carbon nanostructures. Ultra-thin, mechanically tough, electrically conductive graphene films promise to enable a wealth of possible applications ranging from hydrogen storage scaffolds, electronic transistors, to bottom-up material designs. Enthusiasm for graphene-based applications aside, there are still significant challenges to their realization, largely due to the difficulty of precisely controlling the graphene properties. Controlling the graphene morphology over large areas is crucial in enabling future graphene-based applications and material design. This dissertation aims to shed lights on potential mechanisms to actively manipulate the graphene morphology and properties and therefore enable the material design principle that delivers desirable mechanical and electronic functionalities of graphene and its derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low dimensional nanostructures, such as nanotubes and 2D sheets, have unique and promising material properties both from a fundamental science and an application standpoint. Theoretical modelling and calculations predict previously unobserved phenomena that experimental scientists often struggle to reproduce because of the difficulty in controlling and characterizing the small structures under real-world constraints. The goal of this dissertation is to controlling these structures so that nanostructures can be characterized in-situ in transmission electron microscopes (TEM) allowing for direct observation of the actual physical responses of the materials to different stimuli. Of most interest to this work are the thermal and electrical properties of carbon nanotubes, boron nitride nanotubes, and graphene. The first topic of the dissertation is using surfactants for aqueous processing to fabricate, store, and deposit the nanostructures. More specifically, thorough characterization of a new surfactant, ammonium laurate (AL), is provided and shows that this new surfactant outperforms the standard surfactant for these materials, sodium dodecyl sulfate (SDS), in almost all tested metrics. New experimental set-ups have been developed by combining specialized in-situ TEM holders with innovative device fabrication. For example, electrical characterization of graphene was performed by using an STM-TEM holder and depositing graphene from aqueous solutions onto lithographically patterned, electron transparent silicon nitride membranes. These experiments produce exciting information about the interaction between graphene and metal probes and the substrate that it rests on. Then, by adding indium to the backside of the membrane and employing the electron thermal microscopy (EThM) technique, the same type of graphene samples could be characterized for thermal transport with high spatial resolution. It is found that reduced graphene oxide sheets deposited onto a silicon nitride membrane and displaying high levels of wrinkling have higher than expected electrical and thermal conduction properties. We are clearly able to visualize the ability of graphene to spread heat away from an electronic hot spot and into the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surge of interest in graphene, as epitomized by the Nobel Prize in Physics in 2010, is attributed to its extraordinary properties. Graphene is ultrathin, mechanically tough, and has amendable surface chemistry. These features make graphene and graphene based nanostructure an ideal candidate for the use of molecular mass manipulation. The controllable and programmable molecular mass manipulation is crucial in enabling future graphene based applications, however is challenging to achieve. This dissertation studies several aspects in molecular mass manipulation including mass transportation, patterning and storage. For molecular mass transportation, two methods based on carbon nanoscroll are demonstrated to be effective. They are torsional buckling instability assisted transportation and surface energy induced radial shrinkage. To achieve a more controllable transportation, a fundamental law of direction transport of molecular mass by straining basal graphene is studied. For molecular mass patterning, we reveal a barrier effect of line defects in graphene, which can enable molecular confining and patterning in a domain of desirable geometry. Such a strategy makes controllable patterning feasible for various types of molecules. For molecular mass storage, we propose a novel partially hydrogenated bilayer graphene structure which has large capacity for mass uptake. Also the mass release can be achieved by simply stretching the structure. Therefore the mass uptake and release is reversible. This kind of structure is crucial in enabling hydrogen fuel based technology. Lastly, spontaneous nanofluidic channel formation enabled by patterned hydrogenation is studied. This novel strategy enables programmable channel formation with pre-defined complex geometry.