3 resultados para Multiple subspace learning
em DRUM (Digital Repository at the University of Maryland)
Resumo:
This qualitative case study explored three teacher candidates’ learning and enactment of discourse-focused mathematics teaching practices. Using audio and video recordings of their teaching practice this study aimed to identify the shifts in the way in which the teacher candidates enacted the following discourse practices: elicited and used evidence of student thinking, posed purposeful questions, and facilitated meaningful mathematical discourse. The teacher candidates’ written reflections from their practice-based coursework as well as interviews were examined to see how two mathematics methods courses influenced their learning and enactment of the three discourse focused mathematics teaching practices. These data sources were also used to identify tensions the teacher candidates encountered. All three candidates in the study were able to successfully enact and reflect on these discourse-focused mathematics teaching practices at various time points in their preparation programs. Consistency of use and areas of improvement differed, however, depending on various tensions experienced by each candidate. Access to quality curriculum materials as well as time to formulate and enact thoughtful lesson plans that supported classroom discourse were tensions for these teacher candidates. This study shows that teacher candidates are capable of enacting discourse-focused teaching practices early in their field placements and with the support of practice-based coursework they can analyze and reflect on their practice for improvement. This study also reveals the importance of assisting teacher candidates in accessing rich mathematical tasks and collaborating during lesson planning. More research needs to be explored to identify how specific aspects of the learning cycle impact individual teachers and how this can be used to improve practice-based teacher education courses.
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
Alternate Reality Game (ARG) represent a new genre of transmedia practice where players hunt for scattered clues, make sense of disparate information, and solve puzzles to advance an ever-evolving storyline. Players participate in ARGs using multiple communications technologies, ranging from print materials to mobile devices. However, many interaction design challenges must be addressed to weave these everyday communication tools together into an immersive, participatory experience. Transmedia design is not an everyday process. Designers must create and connect story bits across multiple media (video, audio, text) and multiple platforms (phones, computers, physical spaces). Furthermore, they must engage with players of varying skill levels. Few studies to-date have explored the design process of ARGs in learning contexts. Fewer still have focused on challenges involved in designing for youth (13-17 years old). In this study, I explore the process of designing ARGs as vehicles for promoting information literacy and participatory culture for adolescents (13-17 years old). Two ARG design scenarios, distinguished by target learning environment (formal and informal context) and target audience (adolescents), comprise the two cases that I examine. Through my analysis of these two design cases, I articulate several unique challenges faced by designers who create interactive, transmedia stories for – and with – youth. Drawing from these design challenges, I derive a repertoire of design strategies that future designers and researchers may use to create and implement ARGs for teens in learning contexts. In particular, I propose a narrative design framework that allows for the categorization of ARGs as storytelling constructs that lie along a continuum of participation and interaction. The framework can serve as an analytic tool for researchers and a guide for designers. In addition, I establish a framework of social roles that designers may employ to craft transmedia narratives before live launch and to promote and scaffold player participation after play begins. Overall, the contributions of my study include theoretical insights that may advance our understanding of narrative design and analysis as well as more practical design implications for designers and practitioners seeking to incorporate transmedia features into learning experiences that target youth.