2 resultados para Multi-criterion Decision Analysis (MCDA)
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.
Resumo:
The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.