3 resultados para Multi-agent simulation and artificial snow optimization
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Photosynthesis –the conversion of sunlight to chemical energy –is fundamental for supporting life on our planet. Despite its importance, the physical principles that underpin the primary steps of photosynthesis, from photon absorption to electronic charge separation, remain to be understood in full. Electronic coherence within tightly-packed light-harvesting (LH) units or within individual reaction centers (RCs) has been recognized as an important ingredient for a complete understanding of the excitation energy transfer (EET) dynamics. However, the electronic coherence across units –RC and LH or LH and LH –has been consistently neglected as it does not play a significant role during these relatively slow transfer processes. Here, we turn our attention to the absorption process, which, as we will show, has a much shorter built-in timescale. We demonstrate that the- often overlooked- spatially extended but short-lived excitonic delocalization plays a relevant role in general photosynthetic systems. Most strikingly, we find that absorption intensity is, quite generally, redistributed from LH units to the RC, increasing the number of excitations which can effect charge separation without further transfer steps. A biomemetic nano-system is proposed which is predicted to funnel excitation to the RC-analogue, and hence is the first step towards exploiting these new design principles for efficient artificial light-harvesting.
Resumo:
We propose a positive, accurate moment closure for linear kinetic transport equations based on a filtered spherical harmonic (FP_N) expansion in the angular variable. The FP_N moment equations are accurate approximations to linear kinetic equations, but they are known to suffer from the occurrence of unphysical, negative particle concentrations. The new positive filtered P_N (FP_N+) closure is developed to address this issue. The FP_N+ closure approximates the kinetic distribution by a spherical harmonic expansion that is non-negative on a finite, predetermined set of quadrature points. With an appropriate numerical PDE solver, the FP_N+ closure generates particle concentrations that are guaranteed to be non-negative. Under an additional, mild regularity assumption, we prove that as the moment order tends to infinity, the FP_N+ approximation converges, in the L2 sense, at the same rate as the FP_N approximation; numerical tests suggest that this assumption may not be necessary. By numerical experiments on the challenging line source benchmark problem, we confirm that the FP_N+ method indeed produces accurate and non-negative solutions. To apply the FP_N+ closure on problems at large temporal-spatial scales, we develop a positive asymptotic preserving (AP) numerical PDE solver. We prove that the propose AP scheme maintains stability and accuracy with standard mesh sizes at large temporal-spatial scales, while, for generic numerical schemes, excessive refinements on temporal-spatial meshes are required. We also show that the proposed scheme preserves positivity of the particle concentration, under some time step restriction. Numerical results confirm that the proposed AP scheme is capable for solving linear transport equations at large temporal-spatial scales, for which a generic scheme could fail. Constrained optimization problems are involved in the formulation of the FP_N+ closure to enforce non-negativity of the FP_N+ approximation on the set of quadrature points. These optimization problems can be written as strictly convex quadratic programs (CQPs) with a large number of inequality constraints. To efficiently solve the CQPs, we propose a constraint-reduced variant of a Mehrotra-predictor-corrector algorithm, with a novel constraint selection rule. We prove that, under appropriate assumptions, the proposed optimization algorithm converges globally to the solution at a locally q-quadratic rate. We test the algorithm on randomly generated problems, and the numerical results indicate that the combination of the proposed algorithm and the constraint selection rule outperforms other compared constraint-reduced algorithms, especially for problems with many more inequality constraints than variables.
Resumo:
Executing a cloud or aerosol physical properties retrieval algorithm from controlled synthetic data is an important step in retrieval algorithm development. Synthetic data can help answer questions about the sensitivity and performance of the algorithm or aid in determining how an existing retrieval algorithm may perform with a planned sensor. Synthetic data can also help in solving issues that may have surfaced in the retrieval results. Synthetic data become very important when other validation methods, such as field campaigns,are of limited scope. These tend to be of relatively short duration and often are costly. Ground stations have limited spatial coverage whilesynthetic data can cover large spatial and temporal scales and a wide variety of conditions at a low cost. In this work I develop an advanced cloud and aerosol retrieval simulator for the MODIS instrument, also known as Multi-sensor Cloud and Aerosol Retrieval Simulator (MCARS). In a close collaboration with the modeling community I have seamlessly combined the GEOS-5 global climate model with the DISORT radiative transfer code, widely used by the remote sensing community, with the observations from the MODIS instrument to create the simulator. With the MCARS simulator it was then possible to solve the long standing issue with the MODIS aerosol optical depth retrievals that had a low bias for smoke aerosols. MODIS aerosol retrieval did not account for effects of humidity on smoke aerosols. The MCARS simulator also revealed an issue that has not been recognized previously, namely,the value of fine mode fraction could create a linear dependence between retrieved aerosol optical depth and land surface reflectance. MCARS provided the ability to examine aerosol retrievals against “ground truth” for hundreds of thousands of simultaneous samples for an area covered by only three AERONET ground stations. Findings from MCARS are already being used to improve the performance of operational MODIS aerosol properties retrieval algorithms. The modeling community will use the MCARS data to create new parameterizations for aerosol properties as a function of properties of the atmospheric column and gain the ability to correct any assimilated retrieval data that may display similar dependencies in comparisons with ground measurements.